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Abstract—Privacy of social network data is a growing concern
which threatens to limit access to this valuable data source.
Analysis of the graph structure of social networks can provide
valuable information for revenue generation and social science
research, but unfortunately, ensuring this analysis does not violate
individual privacy is difficult. Simply anonymizing graphs or
even releasing only aggregate results of analysis may not provide
sufficient protection. Differential privacy is an alternative privacy
model, popular in data-mining over tabular data, which uses
noise to obscure individuals’ contributions to aggregate results
and offers a very strong mathematical guarantee that individuals’
presence in the data-set is hidden. Analyses that were previously
vulnerable to identification of individuals and extraction of
private data may be safely released under differential-privacy
guarantees. We review two existing standards for adapting
differential privacy to network data and analyse the feasibility
of several common social-network analysis techniques under
these standards. Additionally, we propose out-link privacy, a
novel standard for differential privacy over network data, and
introduce two powerful out-link private algorithms for common
network analysis techniques that were infeasible to privatize
under previous differential privacy standards.

I. INTRODUCTION

Social networks are powerful abstractions of individuals and
the relationships that connect them; social network analysis
can be a very powerful tool. For example, understanding how
well-connected a network is can aid in the development of
word-of-mouth marketing campaign: How quickly will word
of a product spread? Similar analysis is useful in epidemiology,
predicting spread of a disease.

However, data about people and their relationships is po-
tentially sensitive and must be treated with care to preserve
privacy. Generally, social network graphs are anonymized be-
fore being made available for analysis. However, as several re-
cent incidents have demonstrated, releasing even anonymized
graphs may lead to re-identification of individuals within
the network and disclosure of confidential information, with
serious consequences for those involved. In 2007, Netflix
released the Netflix Prize data-set, containing anonymized data
about the viewing habits of its members, for public analysis
by information retrieval researchers. Within a year, it had been
demonstrated that wide-spread de-anonymization of individ-
uals in the data-set was possible using public information
from the Internet Movie Database [1]. By 2009, Netflix was
involved in a lawsuit with one of its members who had been

victimized by the resulting privacy invasion.
Privacy researchers have attempted to improve the security

provided by graph anonymization techniques by adding noise
to the node parameters and structure of the graph [2]. How-
ever, even a noisy graph structure with no node parameters
whatsoever can be subject to deanonymization, particularly if
an attacker has background knowledge of the network data
[3]. For example, knowing the friendship relationships of a
few individuals can make them identifiable in the released
graph, leading to identification of their friends (and disclosure
of information, such as other relationships, that those friends
might not want publicly revealed.) As global social networks
become more broadly accessible, these types of background
knowledge are more readily available [3].

Differential privacy is a privacy standard developed for use
on tabular data that provides strong guarantees of privacy
without making assumptions about an attacker’s background
knowledge [4]. Differentially-private queries inject random-
ized noise into query results to hide the impact of adding
or removing an arbitrary individual from the data-set. Thus,
an attacker with an arbitrarily high level of background
knowledge cannot, with a high degree of probability, glean
any new knowledge about individuals from differentially-
privatized results; in fact, the attacker cannot guess whether
any given individual is present in the data at all.

While many of the privacy concerns associated with social-
network analysis could be relieved by applying differential-
privacy guarantees to common social-network analysis tech-
niques, researchers have struggled to develop suitable adapta-
tions of these techniques. Two principal difficulties arise: The
adaptation of differential privacy from tabular data to network
data, and the high sensitivity of social-network metrics to
relatively small changes in the network structure.

In this paper, we present a practical introduction to the
application of differential privacy to social networks. We
provide the following:
∙ A straightforward introduction to traditional differential

privacy;
∙ A discussion of two known differential-privacy standards

for network data, as well as the contribution of a new third
standard, out-link privacy, which provides strong privacy
guarantees with the introduction of very small noise;

∙ A study of the feasibility of common social-network
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analysis techniques under differential-privacy;
∙ The contribution of two new algorithms, satisfying out-

link privacy that use ego-network style analysis to provide
approximate results for queries that are too sensitive to
perform under previous standards.

II. TRADITIONAL DIFFERENTIAL PRIVACY

Differential privacy was developed by Cynthia Dwork at
Microsoft Research Labs [4]. It does not define a specific
technique or algorithm; instead it states a mathematical guar-
antee of privacy that sufficiently well-privatized queries can
satisfy. Consider a common sequence of events in social
science research: a survey is distributed to individuals within
a population; a subset of the population chooses to participate
in the survey; individual information from the surveys is
compiled into a data-set and some analysis is computed
over it; the analysis may be privatized by the injection of
random noise; and the final privatized result is released to the
general public. Differentially-private queries offer a rigorous
mathematical guarantee to survey participants that the released
results will not reveal their participation in the survey.

We first introduce a few useful notations: 𝐼 is set of
individuals who contribute information to the data-set 𝐷𝐼 (e.g.,
survey participants). The set of all possible data-sets is 𝒟.
We use 𝐹 : 𝒟 → ℜ𝑘: to refer to the desired non-privatized
analysis performed on a data-set and 𝑄 : 𝒟 → ℜ𝑘 to refer to
the privatized implementation of 𝐹 . We refer to the publicly
released, privatized analysis results as 𝑅.

If 𝑅 are the privatized query results that are released to
the public, then 𝑅 is the only evidence an attacker has about
the nature of 𝐷𝐼 . We introduce a possible-worlds model to
understand how differential privacy works. We define 𝐷𝐼 to
be true world from which the analysis was taken. We also
define any data-set that differs by the presence or absence
of one individual to be a “neighboring” possible world: thus
𝐷𝐼−𝐵𝑜𝑏 is the neighboring possible world of 𝐷𝐼 in which
𝐵𝑜𝑏 chose to not participate in the survey.

We require that an attacker possessing the privatized results
𝑅 be unable to determine whether or not 𝐵𝑜𝑏 (or any other
specific individual) took the survey, i.e. whether or not 𝑅 are
the results from an analysis of 𝐷𝐼 or 𝐷𝐼−𝐵𝑜𝑏 (or, indeed, any
neighboring world of 𝐷𝐼 ). Therefore, 𝑅 should be a plausible
result from any neighboring world of 𝐷𝐼 .

Formally, 𝐷𝐼 neighbors 𝐷𝐽 iff 𝐷𝐼 = 𝐷𝐽±𝑥 for any 𝑥 in
the population, and:

Definition 1: A randomized query

𝑄 : 𝒟 → ℜ𝑘

satisfies 𝜖-differential privacy[4] if, for any two possible neigh-
boring data-sets 𝐷1, 𝐷2 and any possible query result 𝑅:

𝑃𝑟[𝑄(𝐷1) = 𝑅]

𝑃𝑟[𝑄(𝐷2) = 𝑅]
≤ 𝑒𝜖

Here 𝜖 is a small, positive value that controls the trade-off
between privacy and accuracy, and is chosen by the person
administering the privacy policy. To make the definition more

intuitive, consider that if we set 𝜖 = 𝑙𝑛(2) , the above states
that the result 𝑅 is at most twice as likely to be produced by
the true world as by any of its neighbors. Setting a smaller 𝜖
will provide greater privacy at the cost of additional noise, as
we will demonstrate below.

The difference between the results from the true world 𝐷1

and its neighbor 𝐷2 is the difference the privatization noise
will need to obfuscate in order for the privatized results to not
give evidence about whether 𝐷1 or 𝐷2 is the true world. The
upper bound of this difference over 𝐷𝐼 ∈ 𝒟 is the sensitivity
of query 𝐹 .

Definition 1: The global sensitivity of a function 𝐹 : 𝒟 →
𝑅𝑘 = 𝐴 is 1:

Δ𝐹 = max
𝐷1,𝐷2

∥𝐹 (𝐷1)− 𝐹 (𝐷2)∥1
over all pairs of neighbouring data-sets 𝐷1, 𝐷2.

Intuitively, the sensitivity of a query is the greatest possible
impact that adding or removing an arbitrary individual from
the data-set can have on the query results, over any possible
data-set. Suppose our analysis 𝐹 asks two questions: “How
many people in 𝐼 are depressed?” and “How many people in
𝐼 have fewer than 3 friends?” Then both answers can change
by at most 1 when a single individual is added to or removed
from 𝐼 , and Δ𝐹 = 2. If our analysis instead asks: “How many
people in 𝐼 are depressed?” and “How many people in 𝐼 are
happy?” then at most one answer can change by at most 1, and
Δ𝐹 = 1. Note that histograms, which partition the individuals
of the data set into ’bucket’ counts, have a sensitivity of 1:
removing or adding an individual will change at most one
bucket count by at most 1. This very low sensitivity makes
histograms a useful tool in differentially private data-mining
[4], [5], [6].

We can create a differentially private query 𝑄 by adding
noise to 𝐹 that is calibrated to cover up Δ𝐹 [4]:

Theorem 1: If 𝐹 : 𝒟 → ℜ𝑘 is a 𝑘 − 𝑎𝑟𝑦 function with
sensitivity Δ𝐹 then the function 𝐹 (𝐷) + 𝐿𝑎𝑝𝑘(Δ𝐹/𝜖) is 𝜖-
differentially private, where 𝐿𝑎𝑝𝑘(𝜆) is a 𝑘-tuple of values
sampled from a Laplacian random variable with standard
deviation

√
2𝜆.

The standard deviation of the Laplacian noise values is√
2Δ𝐹/𝜖. Thus the noise will be large if the function is very

sensitive, or if 𝜖 is small. If we set 𝜖 = 𝑙𝑛(2) on a query with
sensitivity Δ𝐹 = 2, the standard deviation of our added noise
will be close to 4.

It’s important to note that Δ𝐹 is an upper bound taken
across all possible pairs of neighboring data-sets; it is inde-
pendent of the true world. Intuitively, this is necessary because
noise values that are dependent on the nature of the true world
may introduce a privacy leak themselves. For example, when
querying the diameter of a social network, if Alice forms the
only bridge between otherwise unconnected subgraphs in the
true world, removing her from the data-set causes a difference
of∞ in the graph diameter. Noise values calibrated to this true
world must be arbitrarily large (and, in fact, will obliterate the

1The 𝐿1-norm of 𝑥 ∈ ℜ𝑛 is defined as ∥𝑥∥1 = Σ𝑛
𝑖=1∣𝑥𝑖∣.
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utility of the result). However, consider a neighboring possible
world including Bob, who forms a second bridge between
the subgraphs; if this possible world were the true world,
the difference in diameter caused by adding or removing
a node would be finite, and if we calibrated the noise to
that difference, it would be relatively small. If we chose our
noise values based on the true world, an attacker could easily
determine whether or not Bob was in the network: a result of
𝑅 = 300, 453.23 would imply Bob was absent, while the result
𝑅 = 4.23 would indicate that Bob was present. To prevent this,
global sensitivity is based on the worst-case scenario for the
query. In this case, this implies that diameter is a query too
sensitive to be feasibly privatized.

Techniques exist that do not use the global sensitivity
upper bound, such as privatization algorithms using smooth
sensitivity, and these have been applied successfully to graph
analysis problems. However, these techniques satisfy a weaker
definition of differential privacy, and in some cases computing
how much noise is required to privatize a given 𝐷𝐼 may be
infeasible. We will focus on techniques that satisfy strict 𝜖-
differential privacy in this paper, but we recommend looking
at [7] for more information on alternative approaches.

III. DIFFERENTIAL PRIVACY AND NETWORK DATA

The above definition for differential privacy assumes all
information about a data-set participant is provided by the
participant themselves; protecting an individual’s presence in
the data-set then protects all the information regarding them.
The situation changes when we ask survey participants to
provide information about other individuals.

We will refer to individuals who contribute their knowledge
to the data-set as participants, and individuals who have
information provided about themselves (by others) as subjects.
Traditional differential privacy protects participants only, and
in many cases it seems clear that subject privacy is unneces-
sary: if a survey counts the students who attended the “Coffee
with the Dean” event, the dean’s privacy is not important. By
contrast, a study that counts students who report having sexual
relations with the football captain exposes extremely sensitive
information about its subject. Social networks are often col-
lected from populations of interest by having participants list
the full names of their friends within the population; these
relationships form directed network edges leading from the
participant’s node to the nodes of each of their friends [8]. In
this case, the friends are subjects of the participant’s survey
data, but the participant herself may also be the subject of
some of her friends’ survey data (if they also submit surveys).
This presents a complex situation in which to apply differential
privacy.

The core of the differential privacy guarantee is that the
privatized result 𝑅 is difficult to attribute to the true world vs.
one of its neighboring possible worlds. Adapting differential
privacy to networked data amounts to deciding what we mean
by “neighboring worlds” in this context. There are several
possibilities; each one provides a different level of privacy
guarantee and deals with a different type of “gap” between

worlds. As always, there is a trade-off between privacy and
utility: in general, the stronger the privacy guarantee, the more
noise will be required to achieve it. We will describe two
network privacy standards, node privacy and edge privacy,
which have appeared in the literature.

Additionally, we propose a novel third standard, out-link
privacy, which requires less noise than existing standards;
gives a reasonably strong guarantee of privacy similar to
traditional differential privacy; and enables certain queries
that required levels of noise that rendered results meaningless
under existing standards.

A. Node Privacy

A privatized query 𝑄 satisfies node-privacy if it satisfies
differential privacy for all pairs of graphs 𝐺1 = (𝑉1, 𝐸1),
𝐺2 = (𝑉2, 𝐸2) where 𝑉2 = 𝑉1 − 𝑥 and 𝐸2 = 𝐸1 −
{(𝑣1, 𝑣2)∣𝑣1 = 𝑥 ∨ 𝑣2 = 𝑥} for some 𝑥 ∈ 𝑉1

In node privacy, if the true world is a given social network
𝐺, the neighboring possible worlds are ones in which an
arbitrary node, and all edges connected to it, are removed from
or added to 𝐺. This privacy guarantee completely protects
all individuals, both participants and subjects. An attacker in
possession of 𝑅 will not be able to determine whether a person
𝑥 appears in the population at all. This places extremely severe
restrictions on the queries we are able to compute, as we will
demonstrate in section IV, and in many cases, node-privacy
may be an unnecessarily strong guarantee.

B. Edge Privacy

A privatized query 𝑄 satisfies edge-privacy if it satisfies
differential privacy for all pairs of graphs 𝐺1 = (𝑉1, 𝐸1),
𝐺2 = (𝑉2, 𝐸2) where 𝑉1 = 𝑉2 and 𝐸2 = 𝐸1 − 𝐸𝑥 where
∣𝐸𝑥∣ = 𝑘

In edge privacy, if the true world is the social network 𝐺,
neighboring possible worlds are ones in which 𝑘 arbitrary
edges are added or removed from 𝐺. An attacker in possession
of 𝑅 won’t be able to determine with high certainty whether
individuals 𝑥 and 𝑦 are friends, and an individual node in the
graph can plausibly deny the existence of up to 𝑘 of its friend-
ships with other nodes. Single edge privacy, with 𝑘 = 1, is the
standard most often used in existing literature on differentially
private graph analysis. This is a weaker guarantee than node-
privacy: high-degree nodes may still have an identifiable effect
on query results, even though their individual relationships
are protected. However, this is a sufficiently strong for many
applications, and enables many more types of queries to be
privatized than the severely-restrictive node-privacy.

C. Out-link Privacy

A privatized query 𝑄 satisfies out-link privacy if it satisfies
differential privacy for all pairs of graphs 𝐺1 = (𝑉1, 𝐸1),
𝐺2 = (𝑉2, 𝐸2) where 𝑉1 = 𝑉2 and 𝐸2 = 𝐸1−{(𝑣1, 𝑣2)∣𝑣1 =
𝑥} for some 𝑥 ∈ 𝑉1.

This privacy guarantee protects the data contributed by data-
set participants, using the same conceptual privacy standard
as the original definition of differential privacy. Given that the
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true world is a social network 𝐺, the neighboring possible
worlds are ones in which an arbitrary node and all of its
out-links are removed from or added to 𝐺. An attacker in
possession of 𝑅 won’t be able to determine whether a person
𝑥 supplied their data (submitted a survey) to help produce
the graph. This privacy guarantee is strictly weaker than
node privacy, but compares well with single edge privacy
for many queries. Any participant can plausibly deny its out-
links, or, equivalently, any participant can plausibly deny one
in-link from another participant node. Analogous to 𝑘-edge
privacy, we can also provide 𝑘-out-link privacy by considering
neighboring worlds that differ from the true world by the out-
links of up to 𝑘 nodes. Note that 2-out-link privacy allows
two nodes to simultaneously deny all out-links, and as a result,
this enables a complete mutual edge to be protected (providing
single-edge privacy in addition to out-link privacy). In general,
a 𝑘-level privacy guarantee can be satisfied by scaling the
added noise by 𝑘.

Out-link privacy improves on edge-privacy by reducing
the distinctive signature of high-degree nodes in the data-
results, through protecting all relationships cited by the popular
person: although others may still claim to be friends with
her, she can plausibly deny those relationships are mutual.
Additionally this standard simplifies sensitivity computation
and noise addition, enabling many queries that would be
unfeasible under both node and edge privacy as we will
demonstrate in section IV.

Below we will discuss the application of these privacy stan-
dards to common social network analysis tasks such as triangle
counts (and subgraph-counts generally), degree distributions,
centrality measures, graph-modeling, and other differentially
privatized network analyses from the existing literature. In
addition to covering previous work, we provide several infeasi-
bility proofs and propose two original algorithms applying out-
link privacy to common problems in social network anlaysis.

IV. APPLICATIONS OF DIFFERENTIAL PRIVACY TO SOCIAL

NETWORK ANALYSIS

We now present a straightforwards guide to the application
of differential privacy to several common social network
analysis techniques.

A. Triangle Counting

Triangles, instances in which two of an individual’s friends
are themselves mutual friends, indicate social cohesion in
the network. Triangle counts are the key parameter in the
clustering coefficient, a common metric for describing and
comparing graphs. Similarly, counts of other subgraphs such
as stars, or squares, are used as graph statistics for graph
similarity comparisons [9], [10]. All subgraph counts have
similar privacy properties to the triangle count privatization
described below.

Differentially private triangle counts are not feasible under
simple node-privacy. In the worst case, adding a node to a
complete graph of size 𝑛 (a graph containing all possible
edges), will introduce

(
𝑛
2

)
new triangles (Figure 1). Since

Fig. 1. Node-sensitivity of triangle-counts is a function of 𝑛, and thus is
unbounded in general.

Fig. 2. Edge-sensitivity of triangle-counts is a function of 𝑛, and thus is
unbounded in general.

the change is dependent on the size of the graph, the global
sensitivity of the query in general is unbounded: it’s impossible
to compute a finite global upper-bound (see Section III).

For similar reasons to node privacy, edge privacy is also
not feasible for triangle-counts. In the worst case, removing
an edge from a graph with 𝑛 nodes can remove 𝑛−2 triangles
(Figure 2). Since the sensitivity is a function of the graph size,
it is unbounded in general.

We now propose a method for privatizing information
about triangle counts and clustering coefficients under out-
link privacy, using a somewhat modified version of the query
that more closely mimics the information gathered from a real
world social-network survey. To do this, we introduce a simple,
powerful method that can be applied to gather private estimates
of a variety of useful statistics over nodes in the graph.

By focusing on protecting the knowledge each individual
has about their role with respect to the network, out-link
privacy fits naturally with the techniques of ego-network
analysis, an approach to social network analysis which focuses

Fig. 3. The triangle distribution allows us to present clustering information
with an out-link sensitivity of 1.
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on the network as viewed by the individuals belonging to it
[11]. In this approach, a network with 𝑛 members is broken
into 𝑛 overlapping ego-network subgraphs, each consisting of
a individual ’ego’ node and his or her immediate neighborhood
of friends (referred to as alters). A survey collecting informa-
tion about the triangles in an individual’s ego-network might
look like Algorithm 1.

Algorithm 1 A survey gathering information about triangles.
function TRIANGLEQUERY

𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑖𝑠𝑡← Query(“Who are your friends?”)
𝑓𝑟𝑖𝑒𝑛𝑑𝑝𝑎𝑖𝑟𝑠 ← CrossProduct(𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑖𝑠𝑡, 𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑖𝑠𝑡)
𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒← Size(𝑓𝑟𝑖𝑒𝑛𝑑𝑙𝑖𝑠𝑡)

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 ← Query(“Which of these pairs are friends
with each other?”, 𝑓𝑟𝑖𝑒𝑛𝑑𝑝𝑎𝑖𝑟𝑠)

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑐𝑜𝑢𝑛𝑡← Size(𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠)
return (𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒, 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑐𝑜𝑢𝑛𝑡)

end function

The only data that is retained by the researcher is, for
each individual 𝑥: 𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒(𝑥), the number of friends the
individual has, and 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑐𝑜𝑢𝑛𝑡(𝑥), the number of triangles
the individual participates in. These statistics are sufficient to
determine the local clustering co-efficient of the node: the ratio
between the number of triangles the node participates in and
the maximum possible number of triangles for a node of that
degree [9].

Out-degree and local clustering data from this survey can
be collected into a two-dimensional histogram that provides
detailed information about the patterns of social cohesion
of the graph and has a very low sensitivity under out-link
privacy: removing or adding an individual’s survey data to the
histogram only alters one partition count by at most one, and
thus the noise required to privatize this data-structure would be
very small. Histograms with fewer partitions and larger count
values in each partition are less sensitive to added noise; we
propose Algorithm 2 which produces a very flexible, robust,
and safely privatized representation of the social cohesion
patterns in the network using local triangle counts.

Algorithm 2 takes as input two node-degree thresh-
old values, 𝑑𝑒𝑔𝑙𝑜𝑤, 𝑑𝑒𝑔𝑚𝑒𝑑 and uses these to partition the
(𝑜𝑢𝑡𝑑𝑒𝑔𝑟𝑒𝑒, 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑐𝑜𝑢𝑛𝑡) data-points collected from the
survey into low, medium and high degree nodes. The algo-
rithm then computes the local clustering coefficient of each
node and further partitions nodes by these values, creating a
histogram with nine partitions (see Figure 3). Laplacian noise
sufficient to cover a function sensitivity of 1 is added to each
partition, and the privatized result may be released. We can
consider the effect of this noise in terms of how many of
the noisy, privatized partition counts can be expected to differ
measurably from their true values. With only nine counts and
a sensitivity of 1, the expected number of privatized partition
counts which will differ from their true values by more than
3, is less than 0.25. The released histogram accurately and
succinctly captures useful information about the distribution

Algorithm 2 Privatizing local clustering coefficient distribu-
tion data.

function PRIVATECLUSTERING(𝑑𝑒𝑔𝑙𝑜𝑤, 𝑑𝑒𝑔𝑚𝑒𝑑, 𝑑𝑎𝑡𝑎)
Initialize(𝑏𝑖𝑛𝑠[][])
for all (𝑛𝑜𝑑𝑒𝐷𝑒𝑔𝑟𝑒𝑒, 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐶𝑜𝑢𝑛𝑡) ∈ 𝑑𝑎𝑡𝑎 do

𝑑𝑒𝑔𝐵𝑖𝑛←Partition(𝑛𝑜𝑑𝑒𝐷𝑒𝑔𝑟𝑒𝑒, 𝑑𝑒𝑔𝑙𝑜𝑤, 𝑑𝑒𝑔𝑚𝑒𝑑)
𝑙𝑜𝑐𝑎𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐶𝑜𝑢𝑛𝑡/(𝑛𝑜𝑑𝑒𝐷𝑒𝑔𝑟𝑒𝑒 ∗

(𝑛𝑜𝑑𝑒𝐷𝑒𝑔𝑟𝑒𝑒− 1))
𝑡𝑟𝑖𝐵𝑖𝑛←Partition(𝑙𝑜𝑐𝑎𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟, 1/3, 2/3)
𝑏𝑖𝑛[𝑑𝑒𝑔𝐵𝑖𝑛][𝑡𝑟𝑖𝐵𝑖𝑛]← 𝑏𝑖𝑛[𝑑𝑒𝑔𝐵𝑖𝑛][𝑡𝑟𝑖𝐵𝑖𝑛] + 1

end for
for 𝑖 = 0→ 2, 𝑗 = 0→ 2 do

𝑏𝑖𝑛𝑠[𝑖][𝑗]← 𝑏𝑖𝑛𝑠[𝑖][𝑗]+ LaplacianNoise(1)
end for
return 𝑏𝑖𝑛𝑠

end function

Fig. 4. Node-sensitivity of degree distribution queries is a function of 𝑛,
and thus is unbounded in general.

of meaningful local patterns across the graph.
The same simple approach can be used to collect and

privatize any information available within an ego-network,
simply by restructuring the survey appropriately. For example,
replacing question 2 in the survey of 1 by the question ”For
each of your friends, add a check mark if the two of you share
at least one additional, mutual friend” will collect information
about the probability that an edge participates in a triangle.
The question ”Are you part of a group of at least 𝑘 friends
who are all mutual friends with each other?” collects statistics
about cliques in the graph.

In cases where pre-existing, undirected social network data
must be privatized, the survey-collection approach described
above may be simulated by considering each node’s immediate
neighborhood as their ego-network view, and sub-sampling by
introducing 𝛼 probability that the ego is unaware of any given
edge between its alters.

B. Degree Distribution

The degree distribution of a graph is a histogram partitioning
the nodes in the graph by their degree; it is often used
to describe the underlying structure of social networks for
purposes of developing graph models and making similarity
comparisons between graphs [12].

Although degree distributions are represented as histograms,
the sensitivity is not small under node privacy because one
node affects multiple counts in the distribution: removing a
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Fig. 5. Edge-sensitivity of degree distirubtion queries is 4: at most four
values can change by one when a node is added or removed.

Fig. 6. Out-degree sensitivity = 1. Protecting the out-edges of a node provides
privacy with relatively little effect on the degree distribution.

node from the graph reduces the degree of all nodes connected
to it. A node with 𝑘 edges can affect a total of 2𝑘 + 1 values
of the distribution (Figure 4). In the worst case, adding a node
of maximal degree will change 2𝑛 + 1 values, and since this
sensitivity is dependent on 𝑛, it will be unbounded in general
(see Section III).

Edge privacy is feasible for degree distributions, however.
Removing one edge from the graph changes the degree of two
nodes, and affects at most four counts (Figure 5). Under 𝑘-
edge privacy, the sensitivity is 4𝑘. With a sufficiently large
graph, this is a negligable amount of noise, and the utility of
this technique has been successfully demonstrated [6].

Out-link privacy, in contexts where it’s deemed sufficient,
requires even less noise for degree distributions. Here, we con-
sider just the distribution of out-degrees, the result of asking
participants, “How many friends do you have?” Removing one
node and its out-links from the graph affects only one value in
the degree distribution (Figure 5). Under this privacy standard,
a high-degree node may still leave evidence of its presence in
the data-set through the out-degrees of its friends. However,
there are many possible explanations for a slightly higher-
than-expected degree among nodes in the graph: they may
represent additional friendships among the nodes, or outside
friendships with individuals who were non-participants in the
survey. Exploiting this vulnerability to guess the presence of a
high-degree node with any certainty would require an attacker
to possess near complete information about the true social
network.

C. Centrality

Centrality measures attempt to gauge the relative ”impor-
tance” of specific individuals within the social network; they
may be studied on a per-node basis, identifying influential

Fig. 7. A Popularity Graph with edge thickness indicating edge-weight

members of the community, or as distribution scores providing
information about the overall behavior of the social network
[13]. The simplest centrality measure is node degree: nodes
with high degree are more likely to be influential in the
network. However, other centrality measures take into account
information from across the network: betweeness scores indi-
viduals by the number of shortest-paths between other pairs of
nodes across the network that pass through them, and closeness
scores nodes by the sum of their distances to all other nodes
in the graph.

The two more complex centrality measures present dif-
ficulties for traditional approaches to differential privacy in
social networks. Clearly, it is impossible to release a named
list of influential individuals under node-privacy. But even
distributions of centrality scores can be very sensitive, under
both node and edge privacy, due to the role of bridges in
the graph. Removing a node, or edge, which forms the only
connection between two otherwise disconnected subgraphs
will have a catastrophic affect on path distances in the network,
causing finite distances to become infinite, and thus will
drastically alter betweeness and closeness scores. In general,
privatizing traditional centrality measures under traditional
differential privacy remains an open problem.

We propose a very different approach for collecting and pri-
vatizing information about influential nodes within a network;
one that satisfies out-link privacy (by protecting individuals’
data contributions) and leverages individuals’ knowledge about
their community. We define a popularity graph: a synthetic
network that represents the social structure among influential
community members (Algorithm 3).

Individuals in the population are asked to ”list up to three
of your most popular friends within the specified population
group”. A base graph is created containing nodes for all
members of the population group, and undirected edges of
weight 0 are added between all pairs of nodes. The data
collected from the survey is then added to the graph: when
two popular people are listed on the same survey, the weight
of the edge connecting them is incremented. For example, if a
person submits a survey listing three popular friends, weights
of every edge in the triangle connecting those friends will
be incremented. The sensitivity of the popularity graph is 3,
since a maximum of 3 edge-weight values can change if a
participant adds or retracts their data.

To privatize the data, appropriate Laplacian noise to cover
a function sensitivity of 3 is added to all edge-weights. Then
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Algorithm 3 Privatizing centrality data.
function PRIVATECENTRALITY(𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑇, 𝑑𝑎𝑡𝑎𝐼)

𝑉 ← 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝐸[𝑖][𝑗]← 0 ∀𝑖, 𝑗 ∈ 𝑉
for all 𝑖 ∈ 𝐼 do
∀𝑝𝑗 , 𝑝𝑘∈𝑑𝑎𝑡𝑎𝐼 [𝑖], 𝐸[𝑝𝑗 , 𝑝𝑘]←𝐸[𝑝𝑗 , 𝑝𝑘] + 1

end for
for all 𝑖, 𝑗 ∈ 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 do

𝐸[𝑖, 𝑗]← 𝐸[𝑖, 𝑗]+ LaplacianNoise(3)
if 𝐸[𝑖, 𝑗] < 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒𝑇 then

𝐸[𝑖, 𝑗]← 0
end if

end for
return 𝑃𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝐺𝑟𝑎𝑝ℎ = (𝑉,𝐸)

end function

two post-processing steps are applied: edges with low weight
are eliminated, and the graph is anonymized. The resulting
weighted popularity graph is published (Figure 7). This graph
can be used to understand the underlying social influence
structure of the population, identifying social clusters and the
bridges between them. The privacy of data provided by the
query participants is fully protected; however, the subjects who
appear as nodes in the graph will clearly be less secure and
this analysis may not be appropriate in all contexts. For many
population though, the popularity graph should be sufficient
protection: anonymity, noisy edges, and the fact that the
artificially-constructed graph will lack detailed substructures
often used for re-identification attacks, will all contribute to
protecting the privacy of the query subjects.

D. Graph-modeling and Social Recommendations

Several groups have proposed differentially private ap-
proaches to creating graph models–randomized synthetic
graphs that are generated to be similar to a true, private, social
network and thus can be studied safely in place of the orig-
inal graph. The Stochastic Kronecker graph model has been
privatized under edge-privacy [14], and several other groups
have developed their own models that satisfy differential edge
privacy, [15], [16], [17].

We also note that the results from our proposed out-
link privatized degree distribution and triangle statistics (see
Sections IV-B and IV-A ) could provide privatized input for
the Transitive Chung Lu graph model proposed by [18]. This
model is somewhat unique in the literature for its ability to
generate graphs that match both the degree distribution and
clustering coefficient of the original target graph.

Finally, the possibilities and difficulties of applying edge-
privacy standards to social network recommendation systems
are explored in [19].

V. CONCLUSIONS

Differential privacy represents a potentially powerful tool
for analysing social networks while providing strong guar-
antees of privacy for individual participants. The application

of differential-privacy guarantees to social-network analysis
allows results to be released with confidence that individual
data will not be compromised by malicious attackers, even
with the benefit of arbitrary background knowledge.

By providing this guide to differentially private social
network analysis, along with new, powerful techniques for
privatizing social-network data, we hope to spur the appli-
cation of these standards to social-network data in a practical
fashion. In future work we plan to study the application of out-
link privacy to other social-network analysis tasks and provide
studies of these approaches on real-world network data.
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