
Abstract 

We describe an extension of the Tactical Battle 
Manager, which uses goal reasoning techniques to 
control unmanned air vehicles in simulated 
scenarios of beyond-visual-range air combat. Our 
prior work with the Tactical Battle Manager 
focused primarily on behavior recognition, the task 
of identifying the behaviors being performed by 
hostile aircraft. In this paper, we instead focus on 
distributed discrepancy detection and response. We 
also describe an ablation study for which we report 
evidence that these discrepancy management 
components improve mission success and 
efficiency. 

1. Introduction 

Discrepancy detection techniques can be used in goal 
reasoning agents to increase their ability to react to notable 
events and changes in their environment models (Molineaux 
et al. 2010).  In this paper, we describe how we incorporated 
distributed discrepancy detection into the Tactical Battle 
Manager (TBM), our goal reasoning agent for controlling an 
Unmanned Aerial Vehicle (UAV) in simulated scenarios of 
beyond-visual-range (BVR) air combat (Borck et al. 2015a; 
Alford et al. 2015; Borck et al. 2015b). 
 BVR air combat is a modern style of air-to-air combat 
where aircraft engage each other over large distances 
(100km+) through the use of long-range missiles (Shaw 
1985). In BVR combat, these distances afford time for 
reasoning because each maneuver may require a substantial 
duration to complete. This characteristic, together with the 
characteristics of these environments (e.g., imperfect 
information, multiagent, adversarial, continuous), make 
BVR air combat an interesting domain for studying goal 
reasoning. 
 In prior work (Borck et al. 2015a; Alford et al. 2015; 

Borck et al. 2015b), we described an earlier version of the 

TBM, which used behavior recognition, goal selection, and 

automated planning techniques to control a simulated UAV.  

However, goal selection was limited; it occurred only upon 

plan completion or when a human pilot intervened by 

issuing a new command to the UAV.  Thus, any real-time 

discrepancies, such as those that may occur due to 

unexpected actions taken by hostile aircraft, were 

improperly ignored. Air combat pilots who assessed the 

behavior of the TBM noted that, due to this flaw, it behaved 

differently than human pilots. 
 Here we introduce a discrepancy detection capability into 
the TBM that takes a distributed approach in monitoring the 
outputs of its three main reasoning components and 
generating the corresponding discrepancies when 
appropriate. The three discrepancies are: Model Changed 
(i.e., a hostile aircraft changed its behavior), Flanking 
Hostile (i.e., the UAV is being approached by an 
unexpected hostile), and Expectations Violated (i.e., the 
state of the environment differs from what the UAV expects 
to observe). Each type of discrepancy has a unique detector 
that is responsible for monitoring subsystems of the TBM, 
identifying when discrepancies have occurred, and 
reevaluating the TMB’s current goals and plans.  This 
allows the TBM to dynamically respond to changing 
conditions in BVR combat scenarios. 
 We begin by describing the domain (§2) followed by a 
description of the TBM (§3). We then describe three new 
discrepancies that can be triggered and how they are 
processed by the TBM (§4). We next describe our empirical 
study on the usefulness of these discrepancies (§5), where 
we found evidence that incorporating their handling in the 
TBM improves its performance on our BVR air combat 
scenarios. Finally, we discuss related work (§6), plans for 
future work (§7), and conclude (§8). 

2. Domain 

As described earlier, the TBM operates in a BVR air combat 
domain. Compared to traditional air combat, which depends 
on dogfighting and rapid maneuvering to outflank the 
opposition, BVR combat is more deliberate. Positioning and 
timing is more important than low-level motion planning. 

We use the Advanced Framework for Simulation, 
Integration and Modeling (AFSIM) system to simulate our 
BVR scenarios (Zeh et al. 2014). AFSIM is a high fidelity 
air combat simulator that allows aircraft to be controlled 
either programmatically via AI systems or directly by 
human pilots through replicated hardware (flight sticks 
and/or cockpit replications). Scenarios can be 
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programmatically modified and run in batches, which helps 
to facilitate large-scale experimentation.  In addition to this 
work, AFSIM is also currently being used to test how 
effectively human pilots are able to cooperate with the TBM 
in an escort mission. 
 AFSIM replicates real world aircraft in its scenarios. For 
this work, the TBMs control a modified version of an F-16 
with increased speed and turning tolerances (allowing for 
higher G-Forces than typically allowed for human pilots).  
Each aircraft has a payload of eight active radar seeking 
missiles with an approximate firing range of 30 nautical 
miles.  AFSIM provides the low-level controls for the 
aircraft allowing the TBM to focus on higher level 
reasoning.  It provides support for flying and maintaining 
both absolute (i.e., global coordinates) and relative (i.e., 
with respect to a target) bearings as well as waypoint-based 
navigation.  Additionally it provides real-time Weapon 
Engagement Zone (WEZ) information which helps the TBM 
determine its weapon effectiveness with respect to a given 
target in the current state. Finally it simplifies combat by 
providing actions to acquire a weapon lock and fire a 
weapon. 

We focus our scenarios on engagements between two 
opposing teams of aircraft. Before each scenario, both teams 
are provided information on their adversaries, including 
their approximate whereabouts.  Each team includes an 
airborne early warning and control (AWACS) aircraft which 
provides radar coverage over the entire engagement zone. In 
the next section we discuss the various components of the 
TBM and how they interact with the simulation. 

3. Tactical Battle Manager (TBM)  

We present an enhancement of the TBM (Figure 1), which 
we are developing for collaborative pilot-UAV interactions 
and autonomous UAV control. In the experiments described 
in §5, all aircraft run a version of the TBM. The TBM is 
split into several main categories. The Situation Assessor 
includes a (hostile aircraft) Behavior Recognizer and a 
World Modeler. The Goal Manager continually monitors the 
TBM for triggered discrepancies, prioritizes goals, and, if 
needed, selects a new goal the agent should pursue. The 
Predictive Planner includes, among others, a Plan Execution 
Predictor (PEPR) (Jensen et al. 2014) that uses a separate 
internal instance of AFSIM to predict the near-future plans 

of a hostile aircraft, and a Planner that uses this information 
to select plans for the UAV being controlled.  Finally the 
Discrepancy Detectors are the new addition to the TBM that 
allow for a distributed means of detecting notable changes 
and events relevant to the system. 

3.1 Situation Assessor 

Within the Situation Assessor, the TBM’s Behavior 
Recognizer updates hostile aircraft models by observing 
their actions.  It attempts to classify each hostile in terms of 
their aggression level and which aircraft they may be 
targeting. We have studied several approaches for behavior 
recognition, including a simple case-based approach (Borck 
et al. 2015a), an active behavior recognizer (Alford et al. 
2015), and a policy and goal recognition algorithm (Borck 
et al. 2015b). However, in this paper we focus on 
discrepancy detection and, therefore, will use a simpler 
behavior recognition algorithm. In particular, we will use a 
rule-based algorithm to classify hostiles as Attacking or 
Evading a given target. This Behavior Recognizer uses a 
combination of a given hostile’s speed, orientation, and 
position over time to determine if it is reacting aggressively 
or defensively with respect to a given ally. The TBM 
updates these values frequently, as they are expected to 
change during a mission. 

3.2 Goal Manager 

The Goal Manager chooses among competing goals in 
response to a pilot-issued command and the World State.  
The TBM represents a goal as a list of weighted desires and 
targets, where each desire’s agitation is a function of the 
current world state. The higher a desire’s agitation, the more 
urgently the agent wants to alleviate its symptoms (i.e., 
perform actions that reduce agitation). Desires range in type 
from Safety, which is agitated as the UAV moves into more 
dangerous situations, to AggressivePosture, which is 
agitated when the UAV is not actively engaging hostiles. 
Goal selection in the TBM is the process of choosing the 
targets, desires and desire weights that the system should 
focus on. This process was hand tuned over many iterations 
with subject domain experts on BVR combat to approximate 
how human pilots would prioritize their own desires.  
Discrepancies introduce a new means of triggering goal 
management that differs from our prior work, where goal 
selection occurred only when a goal was completed, when a 
goal failed, or when a pilot intervened. 

3.3 Predictive Planner 

The TBM’s Planner is an extension of a simple plan-
library planner (Borrajo et al. 2015): it selects a template, 
generates multiple instantiations of it, and selects the most 
promising instantiation. It first chooses from a set of generic 
symbolic plans (i.e., action sequences) that represent good 
BVR air combat tactics in an ungrounded state. For 
example, a generic plan might have the following form: 

1. Approach Target Engagement 
2. Close on Target to Max Missile Range Figure 1: The Tactical Battle Manager with new discrepnacy 

detector components highlighted 



3. Acquire Missile Lock on Target 
4. Fire on Target 

These generic actions are then resolved into many possible 
grounded actions, including data such as angle of attack and 
engagement speed, and are given (along with the World 
State and Behaviors of known hostiles) to PEPR to generate 
a set of grounded plans with Expectations (stored as a set of 
expected states). Finally, the Expectations are run through 
the current goal’s desires to determine which plan is 
preferable. 
 Finally the Discrepancy Detectors represent the newest 
addition to the TBM.  It contains a list of components 
designed to monitor and generate discrepancies when 
appropriate. We discuss these discrepancy detectors in 
greater detail in the following section. 

4. Discrepancy Detection 

Our extension of the TBM includes three types of 
discrepancies that, when detected, allow the Goal Manager 
to react to situations in new and more efficient ways.  We 
chose each discrepancy type to respond to failures in other 
TBM components and help it to recover gracefully. These 
three discrepancies (and the TBM components whose failure 
causes the discrepancies) are: 

 Model Changed (Behavior Recognizer) 
 Flanking Hostile (Goal Manager) 
 Expectations Violated (Predictive Planner) 

Discrepancy detection is handled in a distributed manner 
where each discrepancy has a corresponding detector 
capable of detecting it, as seen in Figure 1. The Goal 
Manager decides whether to respond to any discrepancies 
when they arise. Their distributed nature ensures that they 
remain agnostic to the specific implementations of the 
reasoning components of the TBM. Sections 4.1-4.3 provide 
more detail. 
 There is one additional type of discrepancy that the TBM 
processes, namely Incoming Missile. This discrepancy 
existed in prior versions of the TBM, and is processed by a 
reactive planner (not shown in Figure 1).  Because an agent 
must react to this discrepancy immediately, it bypasses the 
TBM’s deliberative reasoning cycle.  In the experiments in 
§5, this discrepancy is always on for all aircraft, as disabling 
it would make battles uninteresting (i.e., because the UAV 
would rarely take evasive actions). 

4.1 Model Changed 

The Behavior Recognizer constantly monitors and re-
evaluates each hostile aircraft, updating its perceived 
behavior every frame. PEPR uses these models when 
predicting plans. Thus, they are critical for generating 
accurate predictions/expectations. The Model Changed 
detector triggers on variations in the recognized behavior of 
hostile aircraft. When it notices that a given hostile’s 
behavior has changed, it creates the Model Changed 
discrepancy and notifies the Goal Manager. 

 When this occurs, the Goal Manager first decides whether 
this hostile aircraft is relevant to its currently-executing 
plan. It does this by checking for the following changes 
between the hostile aircraft’s prior and current behavior: 

 Hostile’s target changed to the UAV 
 Hostile’s target changed from the UAV 
 Hostile’s behavior changed (Attacking/Evading) 

If these checks are all negative, the discrepancy is ignored.  
Otherwise, the Goal Manager is given the opportunity to 
select a new goal, taking into account this new information 
to better evaluate its desires. 

4.2 Flanking Hostile 

This discrepancy ensures that the UAV is never in the 
effective missile range of a hostile without having a chance 
to react (e.g., when it gets engaged by a new hostile). The 
Flanking Hostile detector uses pre-encoded knowledge 
about the maximum missile range of the hostiles and is 
triggered whenever the distance between the UAV and a 
hostile approaches this range. The Goal Manager checks 
whether the current plan is actively engaging this hostile, 
and, if not, selects a new goal and then replans. 

4.3 Expectations Violated 

Due to the nature of BVR air combat, plans tend to have 
long durations.  Unfortunately, the longer a plan’s duration, 
the harder it is for PEPR to generate accurate long-term 
predictions.  The Expectations Violated detector alleviates 
this issue by triggering when PEPR’s predictions differ from 
observations in a meaningful way. Rather than comparing 
the actual positions, orientations, and speeds of all aircraft in 
the prediction, the detector instead compares the predicted 
desire agitations versus the observed desire agitations for 
the current goal. 
 As an example, a common set of desires for a basic attack 
goal is {SafetySelf, AggressivePostureTarget, 
AvoidUnnecessaryTargets}. Combining these three desires 
favors plans that ensure the UAV’s safety while 
aggressively pursuing a given target and avoiding other 
targets.  Each desire is assigned a weight in the range [0, 1]. 
If after several minutes of plan execution, 
AvoidUnnecessaryTargets and SafetySelf are more agitated 
than expected, then Expectations Violated detector will raise 
a discrepancy. In practice, the discrepancy detector raises a 
discrepancy whenever the similarity in agitation between 
observed and expected states is less than 95%. For this type 
of discrepancy, the Goal Manager always selects a new goal 
and replans. 

5. Empirical Study 

In our empirical study we examine the following 
hypotheses: 
 

H1: Extending discrepancy detection (as described in §4) 
will increase the TBM’s mission performance 

H2: Extending discrepancy detection will increase the 
TBM’s mission efficiency 



 
We define our metrics in §5.2. Briefly, mission performance 
is a function of the number of aircraft destroyed (on both 
teams), as well as the number of aircraft remaining at the 
end of a scenario. Mission efficiency is instead a function of 
the duration of scenarios in which the friendly team “won”. 

5.1 Scenarios and Evaluation Method 

To test our hypotheses, we created a set of AFSIM scenarios 
where two teams of TBM-controlled aircraft (white and 
black) face off against each other in a 3v3 matchup, where 
each TBM is given a starting goal of destroying all opposing 
hostiles while minimizing allied casualties. We ran each 
scenario twice, once with discrepancy detection enabled 
only for the white team, and then again with it only enabled 
for the black team.  During each run, we logged information 
about missiles shot, aircraft destroyed, and simulation 
length to help discern the validity of our hypotheses.  An 
example of the starting configurations can be seen in Figure 
2. 

Properly testing the TBM requires a set of realistic air 
combat scenarios that differ sufficiently in their setup to 
cause varied mission tactics to be selected. Also, the number 
of aircraft in the scenario needs to be limited due to the 
computational complexity of the simulation.  We settled on 
3v3 because it is small enough for us to run reliably while 
still allowing for interesting combat tactics to emerge such 
as teaming up on an opponent or retreating behind an ally.  
It also makes it easier to recover from a disadvantage, unlike 
in a 2v2 scenario, where having lost an ally almost always 
leads to a loss. 
  

We generated 400 unique scenarios for this study, where 
each is a modification of an original base scenario. In that 
base scenario, each team of three fighters are positioned in a 
line spaced 10 nautical miles apart from each other and 45 
nautical miles away from the opposing team. The starting 

positions of each aircraft are then randomly modified by 
approximately 4 nautical miles in both the North/South and 
East/West directions. This generates varied scenarios where 
allies are occasionally grouped tightly and, at other times, 
they are spread far apart. Because discrepancy detection is 
enabled once for each team in each scenario, this yields a 
total of 800 runs. We did this to remove any inherent bias in 
the starting positions in the generated scenarios. The end 
condition for a run is either when one team is completely 
destroyed or 10 minutes has passed—whichever occurs first.  

5.2 Metrics 

To assess H1 and H2, we use metrics for mission 
performance and mission efficiency with respect to BVR air 
combat. 

Mission Performance 
We commanded each TBM (i.e., provided initial goals) to 
destroy all opposing forces while minimizing ally casualties. 
Thus, mission performance can be measured as functions of 
the number of kills scored and the number of allies lost. 
This led to the following metrics: 

 Mission Score: (#Hostiles Killed) - (#Allies Killed) 
 Mission Outcome: 
o Partial Win: Destroyed more hostiles than allies lost 
o Abolute Win: Destroyed all hostiles  
o Draw: Equal number of hostiles and allies destroyed 

If a given team reliably records a higher mission score and 
has more wins, we argue that it has a higher mission 
performance. 

Mission Efficiency 
Due to the nature of BVR air combat and the underlying 
tactics used by the TBM, it can be difficult to secure a win 
as described above even with superior tactics. The primary 
factor that determines when the TBM fires a missile is the 
range at which a missile is barely evadable. This mimics 
how a human pilot would engage, because as one combatant 
approaches a guaranteed kill shot, so too does an evenly 
matched opponent. We have found that missiles fired from 
the TBM have a 30% chance to destroy its target in almost 
all situations. 
 To compensate for this, we also compute mission 
efficiency, which we define as the speed at which a mission 
is won. By reacting to discrepancies, the TBM should 
respond to changes faster and take more opportunistic shots 
meaning that when it wins, it should win faster.  To show 
this, we plan to compare the duration of Wins vs the 
duration of Losses, where a faster win or slower loss  
represents a more efficient mission. 

5.3 Results 

Table 1 displays the results for the 800 simulations we ran.  
For each metric, its corresponding tally is presented for both 
teams: Discrepancy Detection On (DON) and Discrepancy 
Detection Off (DOFF), as well as the net and percent 
difference of the values of each team.  In all instances, 

Figure 2: An example starting state for a 3v3 scenario running in 

the AFSIM simulator 



enabling discrepancy detection increased mission 
performance and mission efficiency. 
 The most obvious increase is in the number of partial 
wins, which represent how often, at the time the mission 
ended (through duration or destruction) the focal team had 
more surviving aircraft than its opponent. Adding 
discrepancy detection increased the number of partial wins 
by 8%. It also increases the number of kills; on average, 
DON teams score 0.1 more kills per mission than DOFF. 
This seems small, but in BVR air combat any edge you can 
get is valuable—especially since this is facing an otherwise 
exact mirror (i.e., other than discrepany detection the TBMs 
for both teams are identical). Finally, DON teams also win 
about 8% more simulations via total opposition destruction. 
All of these differences are statistically significant as 
assessed via a t-test (p < 0.025 for all metrics). These results 
support H1. 
 

Metric DON DOFF 
Net 

Difference 

Percent 

Difference 

Shots 5387 5350 37 0.69% 

*Kills 1713 1634 79 4.83% 

*Partial 

Wins 
336 311 25 8.04% 

*Absolute 

Wins 
280 260 20 7.69% 

Draws 153 --- --- 

* Avg. 

Win 

Duration 

(seconds) 

261 368 -107 -29.08% 

Table 1: Results of 800 scenarios, where * denotes a statistically 

significant difference according to a single-tailed t-test (p < 0.025)  

 To assess whether Mission Efficiency is also increased 

(H2), we analyzed the average win duration metric.  This 

value is only recorded on runs where one team achieves an 

absolute win (which is the only time a scenario does not 

reach the 10 minute time limit); it measures how efficient a 

team is in executing its actions. The results show that, on 

average, enabling discrepancy detection allows a team to 

win over a minute and a half faster than without it.  As 

shown in Table 1, there is no significant difference in the 

total number of shots fired, nor is there a significant 

difference in the hit chance of a shot. Thus, we infer that a 

faster win time, which supports H2, is a result of better and 

more relevant plans. Even in a loss, this efficiency increase 

is important. Being better at evading enemies and 

prolonging the time before a loss could allow time for 

reinforcements to arrive. 

5.4 Discussion 

Although encouraging, there are several reasons why the 
increases shown are not larger. The TBM was originally 
designed to fly as a wingman to a human pilot in offensive 
air combat scenarios.  As such, the logic it uses to determine 

when to fire a missile was designed to optimize safety above 
all else. Also, it currently lacks the reasoning skills to 
determine when it is safe to improve its shot chance by 
getting closer to its target. Thus, the TBM will almost 
always favor taking a shot from the range at which any 
missiles fired can be evaded if the opponent evades 
correctly. This ensures that, if the hostile returns fire, it 
should still be able to evade. Unfortuantely, this also means 
that when facing itself, the hostile is just as likely to evade.  
As shown in Table 1, the teams have similar shot-to-kill 
ratios. Even if discrepancies allow the TBM to take a more 
opportunistic shot, it still has only about a 30% chance of 
destroying its opponent. Additionally, a shot taken without 
discrepancy detection has the same odds of success.  Thus, 
it is relatively easy for a given scenario to go awry before 
interesting situations occur where discrepancy detection is 
relevant. We plan to address this issue in future work. 

6. Related Work 

The focus of this research on goal reasoning agents is 
discrepancy detection, which has been an active research 
topic for several years. For example, Muñoz-Avila et al. 
(2010) describe the application of a goal reasoning agent, 
GDA-HTNBots, in a team game domain. Their agent’s 
planner (1) generates state expectations and (2) continually 
monitors the state to determine if these expectations are 
violated (i.e., a discrepancy). When this occurs, GDA-
HTNBots selects a new goal and replans accordingly. 
Molineaux et al.’s (2010) ARTUE agent uses a similar 
monitoring process for discrepancy detection. Once one is 
found, ARTUE abduces an explanation for it, adds any new 
assumptions to its beliefs, and applies a rule-based process 
for goal selection that examines the modified beliefs. 
MIDCA (Cox et al. 2012) uses A-distance to detect changes 
in the distribution of its beliefs over time (i.e., a 
discrepancy), and then assesses its cause. It uses this process 
to identify a new goal to select. Wilson et al.’s (2014) agent 
instead bounds expectations to filter minor variations from 
plan expectations that are not semantically meaningful; this 
is important for its application in a continuous domain.  As a 
final example, GDA-C (Jaidee et al. 2013) defines a 
discrepancy to exist when state utility decreases, then uses a 
domain-specific method for calculating the discrepancy, and 
finally a case-based reinforcement learning algorithm to 
select a new goal and its associated policy. A common 
theme among all these agents is that they use a single 
method to detect discrepancies. In contrast, our extension of 
the TBM disburses the discrepancy detection task, where 
each detector monitors the output of a different component 
(i.e., the Behavior Recognizer, Goal Manager and Predictive 
Planner). This allows different types of discrepancies to be 
detected, which supports a more comprehensive goal 
reasoning process. (This may also enhance the TBM’s 
reasoning transparency.) Also, one of the TBM’s method for 
detecting expectation violations is unusual in that it 
examines differences in desire agitations rather than belief 
states (or their utilities).  



One component of the TBM for which discrepancies are 
detected is its Behavior Recognizer, which models the 
behavior of hostile aircraft. Knowing the model of an 
opponent allows an agent to properly respond to it (Bowling 
et al. 2015), and plays a pivotal role in the TBM’s Predictive 
Planner. We have examined multiple methods for behavior 
recognition in the TBM previously including PaGR (Borck 
et al. 2015b), which is a Policy and Goal Recognizer that 
can accurately recognize the complex goals and behaviors 
of hostile aircraft. PaGR was designed to recognize 
advanced tactics. However, for this paper we used a simpler 
rule-based behavior recognizer as it was not our current 
research focus, and it simplified our empirical study. 
 Generating successful plans for scenarios in an 
adversarial environment requires predicting the plans of 
opponents. This has been demonstrated in domains such as 
poker and simpler games like rock-paper-scissors (Billings 
et al. 1998; Tesauro 2003). This is also true for BVR air 
combat; TBM’s Predictive Planner depends on quality 
opponent models to generate its predictions. In prior work, 
we reported that predictive planning can aid behavior 
recognition (Alford et al. 2015). In this paper, we instead 
modified the TBM’s Predictive Planner to use a library of 
generic ungrounded plans, the recognized behaviors of its 
opponents, and the current goal to generate air combat plans 
with expected predicted states. 

7. Future Work 

Our future work objectives include modifications to the 
TBM that further increase its mission performance and 
efficiency. For example, we will add methods for plan 
generation and selection that better exploit the discrepancy 
detection methods described in this paper. We will also re-
introduce our more complex behavior recognition 
algorithms, which should assist with detecting more varied 
and interesting discrepancies. Finally, we will extend the 
types of discrepancies that are generated, and develop a 
machine learning approach that dynamically learns new 
types of discrepancies and how to detect them. We have 
already begun to explore new discrepancies such as ‘Flight 
Model Incorrect’ (i.e., identifying when the expected 
capabilities of an aircraft are different than our model) and 
‘Weapon Engagement Zone Incorrect’ (i.e., identifying 
when our ideal weapon range calculation is not matching 
observed missile performance). 
 In general, as the TBM adds more knowledge to its 
reasoning cycle, we expect new discrepancies will continue 
to arise.  One example of this is multi-agent planning for 
cooperative tactics, another major area of future work for 
the TBM. Adding discrepancies to help identify when the 
current multiagent tactic is no longer relevant or to identify 
an opportunistic tactic is an area we are interested in 
exploring. One issue that remains to be solved is the 
increase in computational and reasoning complexity that 
arises from having so many agents in a single scenario.  
Additional work will need to be done in order to ensure that 
larger scale battles are feasible. 

8. Conclusions 

In this paper we presented methods for detecting three types 
of discrepancies (i.e., Model Changed, Flanking Hostile, 
and Expectations Violated) with a distributed approach in 
the Tactical Battle Manager (TBM), a goal reasoning agent. 
The TBM uses behavior recognition, goal management, and 
predictive planning techniques to control an unmanned air 
vehicle in beyond-visual-range air combat scenarios 
(implemented in a state-of-the-art simulator). We designed 
our discrepancy detection methods to aid in the TMB’s 
ability to recover from an error or change in the data of its 
existing components. Additionally their distributed nature 
grants independence from the specific implementations of 
the TBM’s reasoners, allowing us to update them without 
changing our detectors.  In our empirical study, we found 
that responding to discrepancies detected by these methods 
significantly increased the TBM’s mission performance and 
efficiency. We plan to add other interesting discrepancy 
detection and response methods to the TBM with the goal of 
further improving its mission performance in more 
comprehensive air combat scenarios.  
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