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Abstract. An important consideration in human-robot teams is ensuring that the 

robot is trusted by its teammates. Without adequate trust, the robot may be 

underutilized or disused, potentially exposing human teammates to dangerous 

situations. We have previously investigated an agent that can assess its own 

trustworthiness and adapt its behavior accordingly. In this paper we extend our 

work by adding a transparency layer that allows the agent to explain why it 

adapted its behavior. The agent uses explanations based on explicit feedback 

received from an operator. This allows it to provide simple, concise, and 

understandable explanations. We evaluate our system on scenarios from a 

simulated robotics domain by demonstrating that the agent can provide 

explanations that closely align with an operator’s feedback. 
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1 Introduction 

Robots can be valuable additions to human teams if they provide additional skills to the 

team, lessen the humans’ workload, or can replace humans in dangerous situations. 

However, even if a robot provides such benefits, the humans may not utilize it to its full 

potential if they do not trust it. If the robot is underutilized, it may actually increase the 

humans’ workload (e.g., spending extra time observing the robot’s behavior) or 

exposure to risks (e.g., performing dangerous tasks instead of the robot).  

One option would be to hard-code the robot’s behavior to ensure trustworthiness. 

However, this may not be feasible as the type of behavior that is considered trustworthy 

can depend on the teammate (e.g., their amount of experience working with robots), 

time (e.g., how long the robot has been with the team), or context (e.g., a routine versus 

a dangerous situation). Alternatively, the humans could explicitly tell the robot whether 

it is trustworthy. Yet such feedback may not be possible during run-time if the team is 

in a time-critical situation. Similarly, if the feedback is given at the end of a mission 

(e.g., an after action trust survey) the robot may have performed the entire mission 

while acting in an untrustworthy manner.  
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Our previous work focused on an inverse trust estimate that allows a simulated robot1 

to estimate its own trustworthiness and adapt its behavior in situations where it believes 

it is untrustworthy. We investigated methods that allow the agent to adapt its behavior 

in response to implicit [1] and explicit feedback [2]. In this paper, we extend our work 

by adding the ability for the agent to explain why it is adapting its behavior. Adding a 

level of transparency, wherein an automated system can explain the reasons for its 

actions, can increase the trustworthiness and reliance on automation [3]. By providing 

such explanations, even in situations where errors occur, it is possible to maintain trust 

at a higher level than if no explanations are provided. 

In the remainder of this paper we will discuss how our case-based approach for 

behavior adaptation can also be used for explanation. Section 2 describes how the agent 

estimates its trustworthiness using an inverse trust estimate and uses that estimate to 

guide behavior adaptation. In Section 3, we discuss the feedback model the agent uses 

to learn how to adapt its behavior in response to explicit feedback. Our approach for 

allowing the agent to use the same model for explanation is presented in Section 4. In 

Section 5, we use a military simulation to evaluate the ability of the agent to provide 

correct explanations to the user. Related work, with a specific focus on human-robot 

transparency and explanation, is discussed in Section 6, followed by conclusions and 

areas of future work in Section 7. 

2 Trust-guided Behavior Adaptation 

We assume that the agent receives commands from a single teammate called the 

operator. The operator provides the agent with high-level commands (e.g., “move to 

the flag”, “patrol for threats”) and it performs the assigned tasks autonomously. The 

agent also has direct control over the modifiable components of its behavior. These 

could be parameter values (e.g., minimum and maximum speeds), algorithms (e.g., 

choosing among alternative path planning algorithms), or data sources (e.g., using 

alternative maps of the environment). For each modifiable component 𝑖, the agent is 

responsible for selecting a value 𝑚𝑖 from the partially ordered set ℳ𝑖 of possible values 

(𝑚𝑖 ∈ ℳ𝑖). 

The agent’s current behavior 𝐵 is represented by the tuple containing the currently 

selected value for each of the 𝑛 modifiable components: 

𝐵 = 〈𝑚1, 𝑚2, … , 𝑚𝑛〉 

At any time, the agent can change the values of one or more modifiable components 

from its current behavior 𝐵 to a new behavior 𝐵′ (e.g., changing from 〈𝑚1, 𝑚2, … , 𝑚𝑛〉 
to 〈𝑚1

′ , 𝑚2
′ , … , 𝑚𝑛

′ 〉). Although the agent can change its behavior for any reason, we 

will focus on trust-guided behavior adaptation (i.e., changing the behavior in an attempt 

to be more trustworthy). 

                                                           
1  For the remainder of this paper, we use the term robot to refer to a physical (or simulated) 

robot and agent to refer to the intelligent agent controlling the robot. 



Traditional trust metrics [4] allow an agent to measure its trust in other agents (e.g., 

teammates). However, for an agent to modify its behavior to be more trustworthy it 

must estimate another agent’s trust in it. To perform such an estimate, we use an inverse 

trust metric [1]. Inverse trust is measured from the agent’s perspective, so only 

observable indicators of human-robot trust can be used (i.e., none of the human’s 

internal reasoning information can be used).  

Our inverse trust metric is based on the strong correlation between the agent’s 

performance and human-robot trust [5]. The operator’s perception of the agent’s 

performance is not limited to a mission-level evaluation and can be influenced in real-

time by both suitable and poor performance [6]. Without any guarantees of explicit 

feedback from the operator (i.e., the operator may not always have time to give 

feedback), the agent uses implicit feedback to estimate its trustworthiness. In particular, 

it uses three types of implicit feedback related to its performance: successful completion 

of an assigned task, failure to complete an assigned task, and interruption by the 

operator. This assumes that completing a task will be viewed as satisfactory 

performance, whereas failure or interruption will be viewed as poor performance. 

The agent estimates the trustworthiness 𝑇𝑟𝑢𝑠𝑡𝐵 of its current behavior 𝐵 using the 

influence 𝑖𝑛𝑓𝑖  of each of the 𝑐 commands it has completed. Successfully completed 

commands increase the trust estimate (i.e.,  𝑖𝑛𝑓𝑖 = 1) whereas failed or interrupted 

commands decrease the trust estimate (i.e., 𝑖𝑛𝑓𝑖 =  −1).  Each command is also given 

a weight 𝑤𝑖  related to its relative importance (e.g., giving a higher weight to more 

recent commands, giving higher weight to commands that involve human safety). 

𝑇𝑟𝑢𝑠𝑡𝐵 = ∑ 𝑤𝑖 × infi

𝑐

𝑖=1

 

The trust estimate is recomputed after each command and compared to two threshold 

values: the trustworthy threshold (𝜏𝑇) and the untrustworthy threshold (𝜏𝑈). If the trust 

estimate reaches the trustworthy threshold (𝑇𝑟𝑢𝑠𝑡𝐵 ≥  𝜏𝑇), the agent concludes it is 

behaving in a trustworthy manner and continues to monitor its trustworthiness in case 

of any changes (e.g., a change in operator or mission context). If the trust estimate 

reaches the untrustworthy threshold ( 𝑇𝑟𝑢𝑠𝑡𝐵 ≤  𝜏𝑈 ), the agent concludes that its 

current behavior is untrustworthy and should be changed. Otherwise (𝜏𝑈 < 𝑇𝑟𝑢𝑠𝑡𝐵 <
 𝜏𝑇), the agent continues to monitor the trust estimate until it is more confident about 

its trustworthiness. 

In the event that the untrustworthy threshold is reached, the agent changes from its 

current behavior 𝐵 to a new behavior 𝐵′ and begins measuring the trustworthiness of 

that behavior (i.e., 𝑇𝑟𝑢𝑠𝑡𝐵′). The behavior 𝐵 along with the time 𝑡 it took to reach the 

untrustworthy threshold are stored as an evaluated pair 𝐸 (𝐸 = 〈𝐵, 𝑡〉). As the agent 

evaluates behaviors, it maintains a set ℰ𝑝𝑎𝑠𝑡 that contains all behaviors that have been 

found to be untrustworthy ( ℰ𝑝𝑎𝑠𝑡 =  {𝐸1, 𝐸2, … } ). This set represents behaviors 

encountered on the search path taken by the agent before it eventually finds a 

trustworthy behavior 𝐵𝑓𝑖𝑛𝑎𝑙 . In a case-based reasoning context, the set of previously 

evaluated behaviors is the problem and the trustworthy behavior is the solution. A case 



is created and added to the case base each time the agent finds a trustworthy behavior. 

We use the following case representation: 

 𝐶 = 〈ℰ𝑝𝑎𝑠𝑡 , 𝐵𝑓𝑖𝑛𝑎𝑙〉 

This representation is motivated by the assumption that operators that find similar 

behaviors to be untrustworthy will also find similar behaviors to be trustworthy. A more 

detailed description of case acquisition, similarity calculation, case retrieval, and case-

based behavior adaptation can be found in [1].  

3 Feedback Model 

Our inverse trust metric uses implicit operator feedback to estimate trust, but it is also 

possible for the agent to use explicit feedback. Although explicit feedback is provided 

at the operator’s discretion (i.e., the agent does not know when or how often it will 

occur), it provides direct feedback on the agent’s performance (e.g., “go faster”, “slow 

down”, “watch out for obstacles”). Initially, the agent has no knowledge about the type 

of feedback it will receive or what each piece of feedback means. As feedback is 

received, the agent learns a feedback model that contains information about how it 

should respond to operator feedback. For example, if the operator tells the agent “go 

faster”, the agent should learn that this means it should increase its speed. 

The agent acquires its feedback model by learning the relationships between its 

behavior when feedback is received and a trustworthy behavior (i.e., how it was 

behaving when feedback was received and how it should behave). These relationships 

are stored in a feedback base, where each feedback relationship case 𝐹𝑅 is defined as: 

 𝐹𝑅 = 〈𝑓, 𝑅, 𝑐𝑛𝑡〉 

Each feedback relationship case contains a piece of feedback 𝑓, a relationship 𝑅, and a 

frequency 𝑐𝑛𝑡. For any pair of behaviors 𝐵𝑖  and 𝐵𝑗, the relationship 𝑅𝑖𝑗 encodes how 

the behaviors differ (ℬ × ℬ → ℛ, where ℬ is the set of all behaviors and ℛ is the set of 

all relationships). More specifically, a relationship encodes how each pair of modifiable 

component values differ (𝑟𝑒𝑙: ℳ𝑖 × ℳ𝑖 → 𝒪, 𝒪 =  {≺, ≻, =}). The overall relationship 

𝑅𝑖𝑗 is a tuple containing each of the modifiable component relationships (|𝐵𝑖| = |𝐵𝑗| =

|𝑅𝑖𝑗| = 𝑛, 𝑅𝑖𝑗 = 〈𝑟𝑒𝑙(𝐵𝑖 . 𝑚1, 𝐵𝑗 . 𝑚1), … , 𝑟𝑒𝑙(𝐵𝑖 . 𝑚𝑛, 𝐵𝑗 . 𝑚𝑛)〉). 

The frequency 𝑐𝑛𝑡  measures how many times the relationship 𝑅  was found for 

feedback 𝑓. Since the cases in the feedback base are learned by the agent, it is possible 

for unnecessary or erroneous relationships to be learned (e.g., the operator gave 

incorrect feedback). The agent works under the assumption that unnecessary and 

erroneous relationships occur less frequently than correct ones, so preference is given 

to relationships with higher frequency values. 

 Consider an example where the agent has two modifiable components: its speed and 

its object padding (how far it attempts to stay away from obstacles when planning its 

movement). The agent receives the feedback “go faster” when using a behavior 𝐵1 with 

a speed of 1.0 meter/second and a padding of 0.5 meters (𝐵1 = 〈1.0, 0.5〉). Eventually, 



the agent finds a trustworthy behavior 𝐵2  with a speed of 5.0 meters/second and a 

padding of 0.5 meters (𝐵2 = 〈5.0, 0.5〉). The relationship 𝑅12  between them would 

show the speed increased while the padding remained constant (𝑅12 = 〈≺, =〉). If this 

was the first time this relationship was learned for the feedback “go faster”, the 𝑐𝑛𝑡 

value would be 1 (𝐹𝑅𝑎 = 〈"𝑔𝑜 𝑓𝑎𝑠𝑡𝑒𝑟", 〈≺, =〉,1〉). If the agent receives the feedback 

“go faster” again, it can retrieve this feedback relationship case and know to increase 

its speed. A full description of how the agent can learn a feedback model is described 

in [2]. For the remainder of this paper, we will assume that the agent already has a 

feedback model available to use. 

4 Behavior Adaptation Explanation 

As we explained in the previous sections, the agent has two methods for modifying its 

behavior: adapting in response to implicit feedback and adapting in response to explicit 

feedback. Adaptation in response to explicit feedback occurs directly after the feedback 

is received. This provides the operator with a direct connection between their feedback 

and the behavior change. However, adaptation in response to implicit feedback occurs 

over a longer period of time (i.e., the entire time the agent is measuring the 

trustworthiness of a behavior). Since there may not be any single event that caused the 

agent to change its behavior, it may not be clear to the operator why the behavior change 

occurred.  

To obtain transparency between the agent and the operator, it can provide an 

explanation when it adapts its behavior in response to implicit feedback. The 

information contained in the agent’s explanation could be in different forms and at 

varying levels of abstraction (e.g., a visual representation of the agent’s trust estimate 

over time, a list of the commands that were failed or interrupted, an acknowledgement 

that a behavior change occurred). However, an explanation may not be useful to the 

operator if it is verbose or difficult to interpret. For example, if the agent provided an 

explanation that included a complete list of all assigned commands and their results 

(i.e., all the information it uses to compute the inverse trust estimate), the operator may 

ignore it. 

We designed our agent to provide explanations using a method of communication 

that we believe will be appropriate for the operator. To achieve this, the agent uses the 

model of explicit feedback that it has learned from the operator, since the feedback is 

both understandable (i.e., the operator has used it to communicate with the agent) and 

succinct (i.e., the operator was able to provide the feedback under real-time constraints). 

By using the operator’s own feedback in explanations, the agent relates that its behavior 

adaptation is motivated by the predicted actions of the operator. For example, if the 

agent adapts its behavior by increasing its speed, it can provide the explanation “I 

adapted my behavior because I think you were going to tell me to speed up”. 

The agent generates an explanation (Algorithm 1) when it adapts its current behavior 

𝐵𝑐𝑢𝑟𝑟  to a new behavior 𝐵𝑎𝑑𝑎𝑝𝑡  (i.e., it performs case-based behavior adaptation when 

the inverse trust metric reaches the untrustworthy threshold). The relationship 𝑅 

between the two behaviors is calculated (line 2) and compared to the relationship stored 



in each feedback relationship (i.e., 𝐹𝑅. 𝑅) in the feedback base 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘𝐵𝑎𝑠𝑒 (lines 

3-4). Any feedback relationship that contains the relationship 𝑅 is added to the set ℱ 

(line 5). The 𝑠𝑒𝑙𝑒𝑐𝑡𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘(… ) function selects a single piece of feedback from 

among the feedback items stored in ℱ (line 6). 

 

We propose four alternative implementations for the 𝑠𝑒𝑙𝑒𝑐𝑡𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘(… ) function: 

 Highest Count: The feedback relationship 𝐹𝑅𝑖 with the largest frequency is selected 

(𝐹𝑅𝑖 ∈ ℱ, ∀𝐹𝑅𝑗 ∈ ℱ, 𝐹𝑅𝑖 . 𝑐𝑛𝑡 ≥ 𝐹𝑅𝑗. 𝑐𝑛𝑡) and its feedback 𝐹𝑅𝑖 . 𝑓  is returned. If 

multiple feedback relationships are tied for the largest frequency, one is selected at 

random with a uniform distribution.  

 Highest Group Count: The feedback relationships are partitioned into 𝑘 subsets 

such that all feedback relationships in a subset have the same associated feedback 

and there is only one subset per feedback type (𝒫1 ∪ 𝒫2 ∪ … ∪ 𝒫𝑘 = ℱ, 𝒫1 ∩ 𝒫2 ∩
… ∩ 𝒫𝑘 = ∅, ∀𝐹𝑅𝑖 , 𝐹𝑅𝑗 ∈ 𝒫𝑙 , 𝐹𝑅𝑖 . 𝑓 = 𝐹𝑅𝑗. 𝑓). For each subset, the frequency of all 

feedback relationships in the subset are summed (𝑠𝑢𝑚𝑙 = ∑ 𝐹𝑅𝑖 . 𝑐𝑛𝑡𝐹𝑅𝑖∈𝒫𝑙
) and the 

subset with the largest summed frequency has its feedback returned. If multiple 

subsets tie for the largest summed frequency, one is selected at random with a 

uniform distribution.  

 Mean Group Count: The feedback relationships are partitioned and the mean 

frequency for each subset is calculated (𝜇𝑙 =
𝑠𝑢𝑚𝑙

|𝒫𝑙|
 ). The subset with the largest mean 

frequency has its feedback returned. If multiple subsets tie for the largest mean 

frequency, one is selected at random with a uniform distribution. 

 Random: One feedback relationship is randomly selected from ℱ with a uniform 

distribution. The feedback stored in the feedback relationship is returned. 

The piece of feedback 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 that is returned from Algorithm 1 is used 

to produce a human-readable explanation to the operator. The explanation takes the 

following form: 

“I adapted my behavior because I think you were going to tell me to 

<expectedFeedback>” 

For example, if Algorithm 1 returned “𝑑𝑟𝑖𝑣𝑒 𝑠𝑎𝑓𝑒𝑙𝑦”, the generated explanation would 

be “I adapted my behavior because I think you were going to tell me to drive safely”. 



5 Evaluation 

In this section, we evaluate our claim that the agent produces explanations for its 

behavior that align with the operator’s evaluation of the agent. The evaluation uses 

simulated operators so the agent’s trustworthiness from a human’s perspective cannot 

be directly measured. However, we can measure the agent’s ability to perform actions 

that have been shown to positively influence trust (i.e., providing explanations). Our 

evaluation tests the following hypotheses: 

  H1: The explanations provided by the agent are consistent with the explicit 

feedback the operator would have provided had the opportunity arisen. 

  H2: The explanations provided by the agent outperform a random baseline. 

  H3: The agent provides better explanations using a manually authored 

feedback base compared to a learned feedback base. 

5.1 Domain: eBotworks 

We use the eBotworks simulator [7] for our evaluation. eBotworks allows autonomous 

agents to control simulated robots in an urban environment. In our evaluation, the agent 

controls an unmanned ground vehicle (UGV) in an environment composed of other 

agents (e.g., humans, other simulated UGVs), obstacles (e.g., buildings, vehicles, traffic 

cones, boxes), and ground features (e.g., roads, grass). We chose to use eBotworks 

because it provides a built-in agent design framework, autonomy modules (e.g., natural 

language command interpretation, path planning), and allows for evaluation in a non-

deterministic and noisy environment. 

The scenario we use involves the agent-controlled robot receiving natural language 

commands from an operator. The commands instruct the agent to patrol between its 

current location and a goal location. While patrolling, it continuously scans for 

suspicious objects. If a suspicious object is found, the robot pauses its patrol, moves 

toward the object, and uses explosive-detection sensors to determine if it is dangerous 

or harmless. After classifying a suspicious object, the robot continues patrolling. 

The robot has the following modifiable components (and possible values they can 

take): 

 Speed (meters per second): The maximum speed the simulated robot uses when 

moving through the environment. ℳ𝑠𝑝𝑒𝑒𝑑 = {0.5, 1.0, … , 10.0} 

 Padding (meters): How far the robot attempts to stay away from obstacles when 

planning its path. Higher paddings decrease the likelihood that it will collide with 

obstacles. ℳ𝑝𝑎𝑑𝑑𝑖𝑛𝑔 =  {0.1, 0.2, … , 2.0} 

 Scan Time (seconds): How much time the robot spends scanning each suspicious 

object. Higher scan times increase the probability that the robot will successfully 

classify the suspicious object. ℳ𝑠𝑐𝑎𝑛𝑡𝑖𝑚𝑒 =  {0.5, 1.0, … , 5.0} 

 Scan Distance (meters): How close the robot gets to the suspicious object while 

scanning it. Lower scan distances increase the probability that the robot will 

successfully classify the suspicious object. ℳ𝑠𝑐𝑎𝑛𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  {0.25, 0.5, … , 1.0} 



5.2 Experimental Setup 

Our study uses simulated operators to issue commands to the agent and monitor its 

behavior. The simulated operators were selected to represent a subset of control 

strategies used by human operators (i.e., when to allow the agent to complete a task and 

when to interrupt). Two simulated operators are used: speed-focused and detection-

focused. The speed-focused operator prefers the task to be performed quickly (i.e., 95% 

probability of interrupting if the robot does not complete the task within 120 seconds) 

and correctly (i.e., 100% probability of interrupting if the robot misses a suspicious 

object or incorrectly classifies it). The detection-focused operator prefers the task to be 

performed correctly but is less concerned about speed (i.e., 5% probability of 

interrupting if the robot exceeds 120 seconds). Both operators place a relatively low 

emphasis on the robot’s safety (i.e., 5% probability of interrupting if the robot comes 

in contact with an obstacle). 

At the start of each experimental trial, the robot is assigned a random initial behavior 

(i.e., a random value for each modifiable component from the set of possible values 

using a uniform distribution). Each trial involves multiple runs. The robot is placed in 

an initial position before each run, and six suspicious objects are placed in the 

environment at random locations (uniformly distributed in predefined regions) and with 

random appearance (uniformly distributed from a set of small objects that the robot can 

detect). Each run starts when the operator issues a command to the robot and terminates 

when it successfully completes the task or is interrupted by the operator. At the end of 

each run, the agent updates its inverse trust estimate, compares the current trust estimate 

to the thresholds, and may adapt its behavior. The environment is then reset to its initial 

conditions before the next run. 

Each time the robot is interrupted, the operator generates a piece of natural language 

feedback. The feedback comes in five categories: speed feedback (e.g., “go faster”), 

safety feedback (e.g., “be careful”), false positive feedback (e.g., “that wasn’t a 

threat”), false negative feedback (e.g., “that was a threat!”), and missed object 

feedback (e.g., “you missed one!”). Although the operators provide multiple 

synonymous pieces of feedback for each category (e.g., “speed up”, “go faster”), for 

this evaluation we treat all synonymous feedback as equivalent. The feedback is never 

actually provided to the robot (i.e., the robot cannot use it for adaptation). Instead, the 

feedback is logged and used to evaluate any explanations provided by the robot. For 

each trial, all feedback generated during that trial is recorded. 

Each trial ends in one of two possible outcomes: the robot labels its behavior as 

trustworthy or as untrustworthy. If the behavior is found to be trustworthy, the data 

from the trial is discarded. This occurs because no behavior adaptation occurred and 

therefore no explanations were provided by the robot. However, if the behavior is found 

to be untrustworthy, case-based behavior adaptation is performed (i.e., adaptation in 

response to implicit feedback). The robot uses a case base that was learned during a 

previous study2. The robot’s current behavior (i.e., the one randomly generated at the 

start of the trial) and the behavior returned by case-based behavior adaptation are used 

                                                           
2  The case base described in [1] labelled Patrol Random. It contains cases learned from both 

the speed-focused and detection-focused operators (25 total cases). 



to generate an explanation. Eight variant methods for generating explanations are 

evaluated using Algorithm 1. The variants differ based on the feedback base that is used 

(i.e., authored by an expert or learned3 by the robot) and the method for selecting 

feedback (i.e., Highest Count, Highest Group Count, Mean Group Count, Random). 

We also use a baseline approach that randomly selects an explanation using a uniform 

distribution (labelled as Baseline to avoid confusion with the Random feedback 

selection method). 

At the end of each trial, the robot’s explanation is compared to the explicit feedback 

generated by the operator during the trial. The following metrics are computed: 

 Most Common: The percentage of trials where the robot’s explanation matched 

with the most common piece of feedback provided by the operator. 

 Matched One: The percentage of trials where the robot’s explanation matched at 

least one piece of feedback given by the operator. 

 Mean Rank: The mean rank of the robot’s explanation relative to a list that is ranked 

by the number of times each piece of feedback occurs during a trial. If the robot’s 

explanation does not appear in the ranked list, it is given a value of the size of the 

ranked list plus one. 

The average from 1000 trials was collected and the process was repeated 25 times 

(i.e., 25000 total trials). The robot used a trustworthy threshold of  𝜏𝑇 = 5.0 , an 

untrustworthy threshold of  𝜏𝑈 = −5.0 , and the case-based adaptation approach 

described in [1].  

5.3 Results 

Figure 1 shows results for the Most Common and Matched One metrics, and Figure 2 

shows the Mean Rank results (error bars show 95% confidence intervals). The results 

using the expert-authored feedback base are combined into a single entry, labelled as 

Expert. This was done for simplicity because the results were identical regardless of the 

explanation selection method used. The expert did not include redundancy so each 

relationship only appears once in the expert-authored feedback base. This causes the 

same explanation to be returned regardless of which explanation selection method is 

used. 

All results that use our explanation approach (i.e., Highest Count, Highest Group 

Count, Average Group Count, Random, and Expert) were statistically significant 

improvements over Baseline (using a paired t-test with  𝑝 < 0.001) . These results 

provide support for H2. Expert outperformed the other approaches across all three 

metrics. The primary benefits of using the expert-authored feedback base are that there 

are no erroneous or redundant feedback relationships. Compared to the best results 

when using a learned feedback base (i.e., Highest Count, Highest Group Count, and 

Average Group Count), Expert can better provide an explanation that matches at least 

one piece of feedback given by the operator (91% of the time vs. 81% of the time), and 

                                                           
3  The learned feedback base is identical to the feedback base described in [2] where feedback 

is given by the operator 100% of the time. It contains feedback from both operators. 



regularly provides the most common piece of feedback (75% of the time vs. 61% of the 

time). These results support H3. However, the results are promising as they indicate 

that, while our approach for explanation works best with an expert-authored feedback 

base, reasonable performance can be achieved using a learned feedback base. Given 

that both the expert-authored and learned feedback bases resulted in explanations that 

closely matched feedback from the operator, the results provide evidence that H1 is 

supported. 

 

Fig. 1. The percentage of explanations that matched the most common feedback provided by the 

operator (Most Common) or any feedback provided by the operator (Matched One). 

There are no significant differences between the results when using the Highest 

Count, Highest Group Count, or Average Group Count explanation selection methods. 

However, all three were significant improvements over Random explanation selection. 

This improvement occurred because some feedback relationships in the feedback base 

are erroneous. A higher count value in a feedback relationship indicates that the 

relationship has been observed more often (i.e., less likely to be the result of a single 

error), so the three methods that use the count value are better able to reduce the 

influence of erroneous relationships. 

The primary reason why none of the approaches were able to achieve ideal 

performance (i.e., always providing an explanation that matched the most common 

piece of feedback given by the operator), is because the behavior adaptation process 

also introduced error. The case base used to perform behavior adaptation was learned 

(i.e., may contain erroneous cases) and similarity assessment was only performed using 

a single evaluated behavior (i.e., ℰ𝑝𝑎𝑠𝑡 only contains a single evaluated pair so limited 

information was available during case retrieval). However, even with these sources of 

error our approach was still able to provide reasonable explanations. 



 

Fig. 2. The mean rank of the explanation provided by the agent. 

6 Related Work 

The Situation awareness-based Agent Transparency (SAT) model aims to improve 

human-robot teaming by providing situational awareness, reducing user overhead, and 

allowing the user to appropriately calibrate their trust in the robot [8]. The SAT model 

is implemented as a user interface that provides three levels of transparency: the robot's 

status (e.g., current state, goals, plans), the robot's reasoning process, and the robot's 

projections (e.g., future environment states). The transparency offered by the SAT 

model is significantly more complex than our approach and is designed for a user that 

is continuously monitoring the robot (i.e., constantly observing the robot through the 

interface). Instead, we look to provide transparency for an operator who is performing 

their own tasks and may only monitor the robot sporadically. 

Explanation in AI systems can be divided into internal explanations and external 

explanations [9]. Internal explanations are used by the system as part of its reasoning 

process. For example, DiscoverHistory [10] identifies discrepancies between observed 

environment states and expected environment states, and generates explanations for 

why those discrepancies occurred (e.g., the actions of other agents). These explanations 

provide the system with information about unobservable parts of the environment and 

allow it to respond to unexpected events. The other category of explanation, external 

explanations, differs in that they aim to explain the system’s reasoning process to a 

user. While many internal explanations can be used as external explanations, they are 

not intended to be understandable by a user (e.g., formatting, presentation, amount of 

content). 

Storing concrete problem solving instances gives case-based reasoning an inherent 

advantage in providing explanations when compared to other learning approaches [11]. 



In some domains, providing the user with the cases themselves may be a sufficient 

explanation (e.g., a help desk system). Cunningham et al. [12] have shown that 

providing the retrieved case as an explanation improves user satisfaction compared to 

displaying a rule or giving no explanation. However, using the case as an explanation 

requires that the user can clearly understand why it is similar to the input problem and 

why the solution is appropriate [13]. In our system, explanations are a result of two 

separate case-based reasoning processes: one using the behavior adaptation case base 

and the other using the feedback base. Although the cases stored in the feedback base 

are relatively simple triples (i.e., feedback, relationship, and frequency), the behavior 

adaptation cases require a more complex similarity calculation. The complexity of 

retrieval, use of multiple interconnected case bases (i.e., the results of behavior 

adaptation are used as input when generating an explanation), and time constraints of 

the operator make it unsuitable to directly use the cases as explanations. 

Sørmo et al. [13] identify five goals of explanation in CBR: transparency (i.e., how 

the answer was reached), justification (i.e., why the answer is good), relevance (i.e., 

why a question is relevant), conceptualization (i.e., clarify the meaning of a concept), 

and learning (i.e., teach the user). Our work falls under the transparency category since 

it is focused on how the robot made a decision. To a lesser extent, our explanations also 

provide justification by presenting the reason the agent thinks a behavior change was 

necessary (i.e., it is good because it aligns with the operator’s preferences). Our work 

differs from the traditional use of explanations in CBR in that we are not explaining an 

answer that is given to a user, but instead explaining an agent’s reasoning process. Our 

explanations are cognitive explanations since they explain the reasoning of an 

intelligent system [14]. Cognitive explanations have also been examined in ambient 

intelligence systems [15]. Similar to our work, they discuss how a system can explain 

to the user why a behavior was chosen. However, it differs in that it attempts to explain 

the reasoning that resulted in an incorrect or unexpected behavior being chosen, 

whereas we focus on explaining why a behavior was changed. 

Issue-based prediction [16], like our own work, stores an explanation as the solution 

portion of a case. Case-based reasoning and a weak domain model are used to explain 

which side will win in a legal dispute. Our work uses much simpler explanations and 

does not require any domain knowledge during reasoning, instead learning knowledge 

about operator feedback. However, in a legal domain the explanations are much more 

complex and benefit from domain knowledge. FormuCaseViz [17] is similar to our own 

work in that the explanations are meant to reduce the cognitive burden on the user. The 

system visually displays the differences between the target problem and similar cases, 

helping the user to quickly understand the similarities and differences. This approach 

differs from our own in that it attempts to explain aspects of the CBR process to the 

user whereas we focus on explaining the agent’s reasoning.  

Explanation has been identified as an important feature of recommender systems, 

with numerous systems implementing explanation capabilities [18]. While many 

recommender systems explain why they gave a particular recommendation, 

explanations have also been used to explain why follow-up questions were asked in 

conversational recommender systems [19]. Muhammad et al. [20] have examined how 

the explainability of a case can be used to guide retrieval in a case-based recommender. 



Their approach is based on the idea that a useful case should be both similar and allow 

for informative explanations. This is similar to the work of Doyle et al. [21] that found 

that the nearest neighbor may not provide the best explanation, but instead cases near 

decision boundaries provide more convincing explanations. Our work differs from 

recommender systems in that the agent is not providing alternatives for the operator to 

choose from, but is instead justifying a decision that has already been made. 

It is understandable that trust models have been examined in the context of case-

based recommender systems [22] given the relationship between providing 

explanations and trust. Additionally, trust is an important factor in case-based agent 

collaboration [23] and case provenance [24]. Unlike our work, which focuses on inverse 

trust, these investigations examine traditional trust (e.g., trust in another agent or trust 

in the source of a case). Even outside of the CBR literature, most existing work focuses 

on traditional trust [4]. The two exceptions are the work of Kaniarasu et al. [25] and 

Saleh et al. [26]. Kaniarasu et al. use negative performance factors (e.g., how often the 

robot is warned of poor performance) and periodic performance feedback from the 

operator (e.g., whether the robot is currently performing well) to estimate the operator’s 

trust. This differs from our own work in that their approach requires the explicit 

performance feedback in order to estimate trust. Saleh et al. use a set of expert-authored 

rules to estimate operator trust. Unlike our inverse trust estimate, which can be used 

regardless of operator or mission context, their approach requires the rules to be 

redefined by an expert whenever a change in context occurs. 

7 Conclusions 

In this paper, we examined how an agent, which controls a simulated robot and 

performs trust-guided behavior adaptation, can provide explanations when it modifies 

its behavior. By introducing a layer of transparency, the goal is to further increase the 

agent’s trustworthiness by presenting its operator with the motivation for any behavior 

changes. Our approach uses two case-based reasoning processes, both of which use 

cases that are learned while interacting with the operator. The first process, which was 

the focus of our prior work, involves evaluating the robot’s trustworthiness and 

selecting a new behavior if the robot is behaving in an untrustworthy manner. When 

the robot adapts its behavior, a second case-based reasoning process is used to generate 

an explanation for why the change occurred. Given that the human-robot team may be 

in a time-sensitive situation, we designed our explanations to be simple, concise, and 

understandable. 

Our evaluation involved an operator instructing a robot to patrol a simulated 

environment, identify suspicious objects, and classify them as threats or harmless. As 

the robot completed its tasks, it evaluated its trustworthiness and adapted its behavior 

if it determined it was untrustworthy. Our results indicate that the explanations provided 

by the robot for its behavior adaptations aligned closely with the explicit feedback 

provided by the operator. The primary area we wish to address in future work is to 

validate our results in a user study. While our system was based on the findings of 



existing research on human-robot trust and transparency, we plan to independently 

validate those findings using human operators in our robotics environment.  
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