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Abstract
Legacy system data  models  can interoperate  only if  their 
syntactic and semantic differences are resolved. To address 
this problem, we developed the Intelligent Mapping Toolkit 
(IMT),  which  enables  mixed-initiative  mapping  of  meta-
data  and  instances  between  relational  data  models.  IMT 
employs  a  distributed  multi-agent  architecture  so  that, 
unlike many other efforts, it can perform mapping tasks that 
involve  thousands  of  schema  elements.  This  architecture 
includes a novel federation of matching agents that leverage 
case-based  reasoning  methods.  As  part  of  our  pre-
deployment evaluation for USTRANSCOM and other DoD 
agencies,  we  evaluated  IMT’s  mapping  performance  and 
scalability.  We  show  that  combinations  of  its  matching 
agents  are  more  effective  than  any  that  operate 
independently, and that they scale to realistic problems.

Introduction  
The interoperability of information systems is an important 
issue for  many organizations.  In  particular,  it  is  a  major 
concern  for  integrating  systems  both  within  and  across 
organizations.  For  example,  the  United  States 
Transportation  Command  (USTRANSCOM)  maintains 
information  entities,  called  reference  data,  which  are 
shared  across  client  organizations  at  national  and 
international  levels.  Example  reference  data  entities 
include  airports,  equipment,  and  product  codes.  The 
automated  interchange  of  such  reference  data  across 
information systems ideally requires that they subscribe to 
a  common,  all-encompassing  data  model.  Unfortunately, 
this  is  impractical  given  that  client  applications  are 
typically in constant flux. 

A practical approach for managing these changes is to 
map meta-data (i.e., schema) and instances across systems. 
The  essential  operation  in  schema  mapping  is  Match, 
which takes two schemas as input and produces a mapping 
between their semantically corresponding elements (Rahm 
and  Bernstein  2001).  For  two  schemas  with  n and  m 
elements respectively, the number of possible matches is n
m. Therefore, this effort can be prohibitive when mapping 
schemas  with  hundreds  of  thousands  of  elements.  For 
example, at USTRANSCOM, 25 full-time staff members 
maintain and distribute over 800 data entities to over 1000 
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client  applications,  and  four  full-time  analysts  perform 
mapping. Unfortunately, this approach to mapping is time-
intensive  and  prone  to  human  error.  Thus,  methods  are 
needed  to  automate  all  or  part  of  the  mapping  task  to 
significantly speed it up and reduce errors. 

Several  existing  research  prototypes,  including  Clio 
(Miller  et  al.  2001)  and  Delta  (Clifton,  Houseman,  and 
Rosenthal 1996), provide various levels of intelligent data 
mapping.  Despite  their  demonstrated  utility,  these 
prototypes  were  not  designed  to  support  large-scale 
operational data mapping. That is, they do not adequately 
support  mixed-initiative  mapping  as  required  in  an 
operational  setting.  Additionally,  they  do  not  provide  a 
flexible plug-and-play architecture, which is necessary to 
accommodate emerging mapping methods for  large-scale 
mapping tasks. Protoplasm (Bernstein et al. 2004), a more 
recent data mapping system, attempts to address this issue. 
However, to our knowledge, none of these prototypes have 
been  tested  or  deployed  for  large-scale  operational  data 
mapping efforts (Do, Melnik, and Rahm 2002), and their 
operational benefits have not been quantified. 

Although many commercial  data mapping systems are 
also available, most only provide graphical user interfaces 
for manual mapping (e.g., see MapForce (2007)). Very few 
offer even a limited intelligent mapping capability. Thus, 
there  is  a  need  for  an  extensible  robust  architecture  for 
mixed-initiative relational data mapping. 

To meet this need, we created the Intelligent Mapping 
Toolkit (IMT), which we introduce in this paper. IMT is 
novel  in  several  ways.  It  maps  large-scale  schema (i.e., 
meta-data).  It  employs  a  distributed  multi-agent 
architecture that includes a federation of mapping agents 
that perform case-based similarity assessment and learning. 
IMT semi-automatically acquires domain-specific lexicons 
and thesauri to improve its mapping performance. Also, it 
provides  explanations  to  clarify  its  mapping 
recommendations. 

We evaluated IMT on USTRANSCOM’s reference data 
and  report  on  the  effectiveness  of  its  multi-agent 
architecture. In particular, we show that a combination of 
multiple  mapping  agents  outperforms  any  one  agent 
operating  independently,  and  that  its  multi-agent 
architecture can solve realistic problems.
 The rest of this paper is organized as follows. In the next 
section, we describe the relational data mapping task and 
related  research.  Next,  we  describe  IMT’s  architecture, 
matching agents, and resource acquisition agents, followed 
by  a  report  on  its  performance  evaluation.  Finally,  we 
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conclude with thoughts on future research.

Background and Related Work 
Data  mapping is  a  key  task  for  enabling  the  seamless 
exchange  of  data  across  heterogeneous  systems.  It 
establishes  semantic  concordances  (i.e.,  mappings) 
between  elements  of  two  distinct  schemata  such  that  a 
query issued on their data,  with suitable transformations, 
produces  identical  results  (Fletcher  and  Wyss  2005).  

Mapping is typically performed by matching  schemata 
elements,  and  its  methods  can  be  categorized  by  the 
following dimensions (Rahm and Bernstein 2001):
 Object:  Matching  schemata  versus  matching 

instances;
 Abstraction:  Elemental (matching  each  schema 

element)  versus  structural (matching  groups  of 
structurally related elements);

 Mechanism:  Linguistic (matching elements based on 
names  and  textual  descriptions)  versus  constraint-
based (matching  elements  using  constraints  such  as 
keys and relationships) matching;

 Cardinality (e.g., 1:1, 1:n, and n:m); and 
 Auxiliary  knowledge  resources (e.g.,  lexicons, 

thesauri).
Most schema  matching  systems  perform  1:1,  linguistic, 
elemental,  and  structural  schema  matching.  Some  also 
utilize  auxiliary  resources  (Rahm  and  Bernstein  2001) 
and/or  apply  information  retrieval  and  machine  learning 
techniques  (e.g.,  SemInt  uses  neural  networks  to  cluster 
attributes and identify likely mappings (Clifton, Housman, 
and Rosenthal 1996)). 

At their core, all matching methods must contend with 
syntactic  and  semantic  variations  of  the  schemata 
vocabulary.  Common  syntactic  variations  include 
abbreviations (e.g., Arpt vs. Airport) and conventions (e.g., 
AirportCode  vs.  Airport_Code).  Semantic  variations 
include the use of synonyms (e.g., code vs. id), hypernyms 
and hyponyms (e.g., vessel vs. ship),  meronyms (e.g., first 
and last name vs. name), and  homonyms (e.g., fluke (part 
of an anchor) vs. fluke (by chance)). Syntactic variations 
can  be  addressed  by  exploiting  methods  for  assessing 
string similarity. These vary from finding exact matches to 
using edit distances. In contrast, semantic variations cannot 
be  effectively  addressed  using  conventional  string 
matching  techniques.  Instead,  auxiliary  knowledge 
resources  such  as  thesauri,  linguistic  ontologies,  and 
morphological tools must be used. Some also use manually 
developed domain-specific ontologies (e.g., Yu et al. 1991; 
Park  and  Ram  2004).  The  use,  development,  and 
maintenance  of  knowledge  resources  with  suitable 
coverage and validity pose challenging issues,  which we 
address  in  IMT.  The  large  variations  in  schemata 
vocabulary  motivate  the  adoption  of  a  multi-pronged 
approach  for  matching  –  the  approach  we  take  in  IMT, 
where  several  configurable  linguistic  and  structural 
matching  agents  are  applied  to  each  pair  of  schema 

elements to assess their similarity. In addition, IMT can be 
easily  extended  to  include  new  matching  agents.  In 
contrast, existing systems tend to rely on a single method 
or fixed set of linguistic matching methods.  

Only a few mapping systems have been systematically 
evaluated.  For  example,  SemInt  (Clifton,  Housman,  and 
Rosenthal  1996) was evaluated with only five attributes, 
and  Protoplasm  only  underwent  evaluation  for  its 
scalability  (Bernstein  et  al.  2004).  We instead  evaluated 
IMT’s  mapping  performance  to  broadly  assess  the 
effectiveness and scalability of its multi-agent architecture.

System Description
USTRANSCOM’s Master Model is a model of reference 
data.  It  was  designed  to  standardize  all  the  relational 
database  tables  maintained  and  distributed  by 
USTRANSCOM. Relational  database schemas pertaining 
to  new  DoD  processes,  which  are  continuously  being 
developed, must be mapped to the Master Model as they 
are introduced or changed. We designed IMT to support 
schema and  Master  Model  management  professionals  at 
USTRANSCOM and other DoD agencies with schema and 
instance mapping tasks (CDM 2006). When deployed, we 
expect  IMT to  significantly  reduce  the  time  required  to 
map schemas and instances. 

IMT’s primary task is to suggest mappings to users for 
final verification and acceptance. Its architecture includes 
the following three layers of components (see Figure 1).

GUI Layer: This comprises a graphical user interface that 
allows users to perform the following actions:
 import, select, and visualize relational schemata 

and  instances,  the  elements  of  which  are  to  be 
mapped;

 acquire auxiliary resources (e.g., abbreviation and 
synonym  libraries)  by  invoking  the  matching 
agents;

 create,  load,  and  work  on  mapping  sessions 

Figure 1. IMT’s functional architecture
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during  which  users  may  configure  and  invoke 
matching  agents,  receive  mapping  suggestions, 
review  mapping  explanations,  and  accept, 
change, and save mappings (see Figure 2); and

 export the mappings for use in other applications.
IMT users map schemas by creating a mapping session, 

in which they select a pair of schemas and the subsets to be 
mapped.  Users  then  configure  and  invoke  the  mapping 
agents, review and accept mappings from the ranked list of 
mapping  recommendations,  and  save  them with relevant 
comments. 

For example, Figure 2 shows mapping recommendations 
generated  for  two  schemas  from  USTRANSCOM 
containing over 2000 Tables and 13,000 fields. The target 
schema elements are hierarchically displayed (highlighted 
in  blue  on  the  left  in  Figure  2).  For  each  element,  the 
corresponding  source  schema  element  with  the  highest 
similarity score is shown (highlighted in red on the right in 
Figure  2).  For  example,  the  Master  Model  field 
“TRANSPORTATION-UNIT  SHIPMENT-UNIT 
IDENTIFIER” may be suggested as a mapping for the field 
“Container Transportation Control Number” in the WPS-
GTN schema. The WPS-GTN refers to a schema for data 
exchange  between  the  defense  department’s  Worldwide 
Port System (WPS) and the Global Transportation Network 
(GTN) System.1  

The lower panel of the interface displays explanations 
about  the  computed  similarity  related  to  the  currently 
selected  recommendation.  Users  can  review  these  when 

1The WPS system tracks all DoD shipments across all ports in the 
World  and  the  GTN  system  provides  in-transit  visibility  of 
shipments within the Defense Transportation System (DTS).

deciding  whether  to  accept  or  reject  a  recommendation. 
The sub-panel highlighted in green (on the left) shows the 
relevant matching agents and the sub-panel highlighted in 
black  (on  the  right)  shows  the  corresponding  similarity 

explanations.  For  example,  the  field-based  N-gram 
Similarity Agent may calculate a similarity score of 0.42 
and present an explanation that reads “the two field names 
share  16  out  of  61  tri-grams  (segments  generated  by 
passing  a  window,  3  characters  long,  over  a  string)  and 
their descriptions share 41 out of 71 tri-grams”. 
Agent Layer: This layer includes five sets of configurable 
agents that support user actions: 
 Import agents: These import relational schemata 

and instances from a variety of source files (e.g., 
Microsoft  Excel,  comma-delimited,  XML)  and 
from databases via JDBC or ODBC connections. 

 Resource  Learners:  Auxiliary  knowledge 
resources  (i.e.,  abbreviations  and synonyms) are 
acquired semi-automatically. The textual elements 
of  verified  mappings,  either  imported  from  an 
external file or from the current session, are used 
to  generate  abbreviation  and  synonym 
suggestions.  The  Abbreviation  Learner detects 
and  extracts  <abbreviation,  expansion>  pairs 
using a  heuristic  that  assumes an  abbreviation’s 
letters  preserve  their  relative  ordering  in  the 
expansion,  while  the  Synonym  Learner 
recommends two words as synonymous based on 
their  probability  of  association.  The  strength  of 
association  is  computed  using  the  mutual  
information  metric which  considers  the  ratio  of 
joint  probabilities  of  words  and  the  product  of 

Figure 2.  IMT’s User Interface
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their independent probabilities. This probability is 
also used by the mapping agents (discussed in the 
next  bulleted  section)  to  define  the  strength  of 
their synonymy relation. The user can select from 
a  library  of  synonyms  and  abbreviations  to 
configure  the  matching  agents  for  a  specific 
domain.

 Matching  agents:  These  agents  compute  the 
similarity  between  elements  (i.e.,  tables  and 
fields)  of  a  pair  of  schemata.  The  IMT agents’ 
matching  techniques  employ  similarity 
assessment procedures typically used in methods 
that  implement  case-based  reasoning  (CBR),  a 
problem-solving  methodology  that  retrieves  and 
reuses  solutions  from  similar  cases  to  interpret 
and/or solve a new problem (Aamodt and Plaza 
1994). Similarity assessment constitutes a critical 
step in case retrieval.

IMT represents  schema  elements  using  a  feature 
vector. In particular, it performs a linguistic analysis of 
element names and descriptions to create a bag-of-words 
representation  (Gupta,  Aha,  and  Moore  2006).  The 
process  of  matching  elements  compares  two  feature 
vectors and yields a similarity value ranging from 0 to 1, 
where 1 implies that two schema elements are identical 
and 0 indicates they are distinct.

The  IMT  agents’ similarity  function  computes  a 
ratio of the weighted combinations of matching features 
(i.e.,  their intersection) and the union of all features in 
the two vectors (Gupta and Montazemi 1997).  Feature 
weights  are automatically  set  by the feature-weighting 
agents, which we describe later in this section. 

IMT includes  four  linguistic  matching agents,  each 
utilizing a different feature representation, to address a 
variety  of  syntactic  and  semantic  variations.  For 
example, the N-gram Matcher converts element names 
and descriptions into n-grams, each of which becomes a 
feature.  This addresses the morphological  variations in 
the text pertaining to verbs and nouns (e.g., description 
vs.  describe).  Likewise,  the  Word Matcher tokenizes 
multi-word descriptions into words that will be used as 
features  for  linguistic  matching.  Unlike  the  N-gram 
Matcher,  the  Word  Matcher  uses  inputs  from  the 
Synonym  Matcher  and  the  Abbreviations  Matcher to 
process  semantic  variations.  The  Synonym  Matcher 
computes  the  similarity  of  two  features  by  using  the 
Synonym  Library  and  the  Abbreviations  Matcher 
returns a similarity value of 1 when two features have an 
abbreviation  relation  and  0  otherwise.  The  Word 
Matcher then incorporates these results into the overall 
similarity assessment.

The  Weight  Learner supports  IMT’s  linguistic 
matching agents. It implements a modification of the TF-
IDF  method  commonly  used  in  information  retrieval 
systems (Salton and McGill 1983). We use this method 
because, in the schema mapping task, only one instance 
per  class  is  available,  which  prevents  using  feature-
weighting algorithms (e.g.,  information gain) that  need 

multiple instances per class.
In  addition  to  linguistic  matching  agents,  IMT 

includes  an  implemented  Structural  Matcher  and  an 
Instance Matcher, which we will implement and include 
in  a  future  version  of  IMT.  The  Structural  Matcher 
uses  elemental  attributes  (e.g.,  keys,  key  types,  data 
types,  and  other  constraints  such  as  field  lengths)  to 
assess  structural  constraint  similarity.  The  Instance 
Matcher will examine the data content of two fields to 
determine their similarity.  For example,  it  will use the 
identity function for string matches, and both max-min 
ranges and averages for numeric features. 

The  Match  Aggregator combines  and  weights  the 
results  of  the  linguistic  and  structural  agents  into  an 
overall similarity score. IMT allows users to control the 
contribution  of  each  agent.  By  default,  all  agents  are 
equally  weighted.  In  our  future  work,  we  will  add  a 
weight-learning component to the Match Aggregator.

 Validation agents:  Currently, IMT implements a 
limited  automated  validation  capability:  an 
explanation  capability  for  each  matching  agent. 
Users can review these explanations to confirm or 
refute  mapping  suggestions.  We  included  this 
capability because our research on explanation in 
CBR demonstrated its ability to improve decision-
making  performance  (Montazemi  and  Gupta 
1997).  In  future  work,  we  will  also  consider 
methods that allow users to validate mappings by 
executing the applications on the mapped data.

 Export  agents:  These  export  the  computed 
mappings in a variety of formats (e.g., XML) for 
use by other systems.

Database Layer: This includes the following repositories:
 Schema  Base:  This  contains  relational  schemas  and 

their elements (i.e., tables and fields).
 Instance Base: This contains data records for a given 

schema.  Data  records  from different  sources  can  be 
associated  with  a  single  schema.  They  can  also  be 
partitioned into subsets to support schema mapping or 
to map a record from one data source into a  record 
from another.

 Mapping  Base:  IMT  supports  mapping  among 
schemas, tables, and fields. (Future versions will also 
support  mappings  between instances.)  Mappings  are 
stored in the Mapping Base, along with any additional 
information  (e.g.,  user  comments  and  mapping 
decision history) that can be used to improve mapping 
performance,  as  well  as  abbreviation  and  synonym 
learning behavior.  

 Resource Base  (i.e.,  the Abbreviations and Synonym 
Libraries):  This  stores  abbreviations  and  synonyms 
and the strength of association between synonyms for 
use by matching.

Evaluation
We evaluated IMT’s ability to support the mapping task. In 



particular,  our  goal  was  to  evaluate  its  mapping 
performance  and  assess  the  effectiveness  of  using  a 
combination  of  mapping  agents  (i.e.,  Multi-agent 
configuration)  in  comparison  to  using  a  single  agent 
independent  of  other  agents  (i.e.,  Single  agent 
configuration).  Complexities  inherent  in  the  schema 
mapping  task  imply  that  multiple  concurrent  matching 
techniques  are  likely  to  perform  better  than  a  single 
matching technique. However, thus far, this has not been 
formally  investigated.  Consequently,  it  is  one  of  the 
primary  foci  of  our  evaluation.  Next,  we  present  our 
empirical hypothesis, data, tools, measure, test procedure, 
results, and their analysis.

Hypothesis. IMT performs significantly better in its multi-
agent mode than in its single-agent mode. As explained in 
the  introduction,  no  multi-agent  approach  for  automated 
schema mapping exists, which motivates this hypothesis.
Data. USTRANSCOM provided us with two schemas to 
evaluate  IMT  on  the  mapping  task:  (1)  the  WPS-GTN 
schema and (2) the Master Model schema (see Table 1). 
This  task focuses  on mapping  WPS-GTN to  the Master 
Model, which has 12,383 fields. This pair of schemas has 
10,302,656 1:1 possible field mappings. USTRANSCOM 
provided 597 of the 832 mappings from WPS-GTN to the 
Master Model, which we used as the Gold Standard for our 
investigation. There were no mappings for the remaining 
235 of these 832 WPS-GTN fields. None of the mappings 
involved  identical  field  or  table  names  across  the  two 
schemas, which means that partial matching was required 
for all mappings.  

Table 1. Schemas for mapping performance tests
Characteristic WPS-GTN Master Model

Tables 47 2039
Fields 832 12,383
Fields per Table (avg.) 18 6

Tools. (1) IMT was used with all its matching agents: Word 
Matcher  (WM),  Structural  Matcher  (STM),  and  the  N-
Gram  Matcher  (NM),  The  Synonym  Matcher  and  the 

Abbreviations Matcher are only used in conjunction with 
WM and are not independently mentioned here. (2) CDM’s 
multi-agent  test  platform,  called  the  Integrated 
Collaborative  Decision  Maker  (ICDM),  was  used  for 
simulating  mapping  tasks  (CDM  2005).  ICDM  is  a 
development  and  test  toolkit  for  distributed  decision 
support systems that include cooperating software agents.
Measure. We measured the Rank of the Correct Mapping 
(RCM) in the list of ranked suggestions displayed by IMT. 
A rank of 1 means that the IMT agent performed perfectly. 
An RCM of 5 implies that a user will likely look through 5 
mappings  before  finding  the  correct  one.  Lower  RCM 
values imply better performance.
Procedure. We performed 4 simulation runs of IMT using 
CDM’s  test  platform  to  generate  and  record  mapping 
suggestions for the 597 WPS-GTN fields for which we had 
the user mappings.  For each of these we measured their 
RCM.  The  first  three  runs  involved  the  individual 
matching agents (i.e., WM, STM, and NM). In the fourth 
run, we combined the agents using the Match Aggregator 
for  a  multi-agent  (MA)  mode.  To  generate  the  best 
mapping suggestions,  we manually searched for  the best 
weight combination to be used by the Match Aggregator. 
We  only  report  the  best  result  here  and  use  paired  t-
statistics for our analysis.
Results and Analysis. IMT, when used in the MA mode, 
outperforms  all  of  the  individual  matching  agents  (see 
Table 2).  The average RCM for  MA was 12.90. This  is 
significantly better than using only the WM (RCM=23.93, 
[p=0.000]),  STM  (RCM=71.30,  [p=0.000]),  or  NM 
(RCM=34.34,  [p=0.000]).  Therefore,  we  accept  our 
hypothesis. 

The best performing weight combination for MA was 3 
(WM),  1  (STM),  and  1  (NM).  Therefore,  the  word-
matching agent proved to be the most effective contributor 
among the aggregated matching agents.

For  59.05%  of  the  mapping  tasks  (i.e.,  WPS-GTN 
mappable  fields),  the  best  performing  MA provides  the 
correct  mapping  within  the  first  five  suggestions.  Given 
that  USTRANSCOM  currently  employs  no  tool  with 
comparable  capabilities,  their  use  of  IMT  could  yield 
substantial savings in effort. 

Each  simulation  run,  comprising  597  mapping  tasks, 
took  approximately  1  hour  and  45  minutes  on  average. 
This implies that each mapping task took approximately 11 
seconds,  which  TRANSCOM  users  consider  as  an 
acceptable  performance  level  for  mapping  against  a 
schema with 12,383 fields. Thus, we conclude that IMT’s 
multi-agent  architecture  is  well  suited  for  real  mapping 
tasks.

Discussion
Our evaluation shows that IMT is effective for industrial 
strength mapping tasks. As an example, for nearly 60% of 
the time,  the correct  mapping is  contained within IMT’s 
top five suggestions, resulting in a significant acceleration 

Table 2. Task performance results 
Agen

t RCM Proportion of correct mappings in
Top 1 Top 5 Top 10

WM 23.93 25.72% 51.44% 65.99%
STM 71.30 6.43% 27.58% 34.86%
NM 34.34 26.90% 48.22% 54.99%
MA 12.90 29.44% 59.05% 69.20%



of the mapping task.  At USTRANSCOM, this implies  a 
potential savings of one full-time staff member. 

Although IMT significantly reduced mapping errors, it 
did not eliminate them. This validates our emphasis on a 
mixed-initiative  approach  and  the  utility  of  the  user’s 
domain and task expertise.

Independent  of  the  evaluations  reported  here,  we 
conducted  an  informal  evaluation  of  IMT  at 
USTRANSCOM.  USTRANSCOM  users  found  IMT’s 
explanation  capability  valuable.  For  example,  based  on 
IMT’s  recommendations  and  explanations,  they  found 
additional  mappings  in  their  schemas  that  they  had 
previously  overlooked.  We  also  tested  its  plug-and-play 
multi-agent architecture by developing and testing an agent 
that performs exact matching, which required only a few 
hours  demonstrating that  it  is  relatively simple to  create 
and integrate new matching agents into IMT’s architecture.

Conclusion
Semantic mapping across heterogeneous data is required to 
enable  interoperability  across  organizational  systems.  Its 
automation  has  been  the  focus  of  much  recent  research 
(Rahm and Bernstein 2001;  Kalfoglou and Schorlemmer 
2005). However, these recent methodologies have not been 
applied in industry nor evaluated in an operational setting. 
We introduced and described IMT, a practical  integrated 
tool for semi-automatic schema mapping. It includes many 
novel  features,  such  as  case-based  matching  agents 
embedded in a distributed multi-agent architecture with an 
explanation capability. We demonstrated that IMT’s multi-
agent version outperforms its single-agent variants and that 
it performs well on realistic mapping tasks. 

We left several issues to be addressed in the future. For 
example,  we  will  improve  our  algorithms  for  schema 
mapping by considering instance information in addition to 
schema, content, and structural information. We will also 
exploit  existing  semantic  resources  such  as  WordNet 
(Felbaum 1998) and investigate methods for automatically 
identifying  the  optimal  weight  settings  to  aggregate 
matching results,  rather than rely on manual search. Our 
future  empirical  studies  will  also  include  an  analysis  of 
IMT’s abbreviation and synonym learning capabilities, as 
well as the Instance Matcher. Finally, we will investigate 
the applicability of IMT to mapping XML schemas. 
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