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Abstract 

The ARTUE (Autonomous Response to Unexpected 
Events) system was built as a prototype to demonstrate the 
usefulness of Goal-Directed Autonomy. We provide an 
overview of some of the design decisions made in its 
construction, as well as a discussion of how we chose to 
evaluate it. We close with a brief discussion of interesting 
research questions raised by ARTUE’s design. 

 Introduction   

The ARTUE system is an agent architecture designed for 

three primary criteria: ARTUE should (1) respond 

competently in a complex environment, (2) handle 

unexpected anomalies within the environment gracefully, 

and (3) change its own goals when necessary to achieve a 

high level of autonomy. ARTUE was designed as a 

prototype system for a new conceptual agent model, Goal-

Directed Autonomy (GDA), which can be briefly 

summarized as the following 6-step reasoning cycle: (1) 

plan and predict, (2) act, (3) check for discrepancies, (4) 

explain discrepancies, (5) formulate goals, and (6) manage 

goals. This model was created to establish a generalized 

procedure for meeting the second and third criteria; 

constant monitoring in step 3 leads to detection of 

anomalies, steps 4 and 5 provide a principled response, and 

step 6 provides a higher level organization for goals and 

goal-directed behavior. ARTUE is our design for a GDA 

agent, and attempts to fulfill all three criteria. In the rest of 

this paper we describe the design of ARTUE (Section 2), 

the design of its evaluation, (Section 3), and briefly discuss 

future research directions (Section 4). 

Design of ARTUE 

In the following paragraphs, we discuss how ARTUE’s 

design developed, providing components for 5 of the steps 
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of the GDA reasoning cycle (the act step being provided 

by the environment). We describe these components out of 

order, as the rationale for selecting a later component 

sometimes affected the choice of an earlier one.  

As we see it, an anomaly occurs whenever the agent 

fails to predict the future correctly. We chose to take the 

view that the world is deterministic, and therefore, failure 

to predict arises from hidden state and/or external 

influences (or lack of knowledge, which is not addressed 

here). It is also possible to model the world as stochastic, 

in which case failure to predict might be caused when rare 

complications occur that an agent ignores for convenience. 

Our choice to model predictions as deterministic rather 

than stochastic was practical rather than necessary; we 

hope others will soon investigate probabilistic models in 

the framework of goal-directed autonomy. 

Our choice of representation was influenced by the 

requirement of performing in complex environments, as 

well as the need to represent the causes of failure to predict 

hidden states and external influences. We chose the 

planning domain language PDDL+ (Fox and Long, 2006), 

which models the world using processes and events, which 

are continuous time-based representations of how the 

world changes either as the result of agent action or 

external influences. We also extended PDDL+ with a list 

of hidden predicates, so that we could reason about state 

elements that cannot be directly observed.  

ARTUE’s explanation system (which performs the 3
rd

 

step of the GDA cycle) was designed to abduce hidden 

state for reasoning about anomalies. To this end, we chose 

a freely available explanation system that incorporates a 

deterministic fact-based representation, the Assumption-

Based Truth Maintenance System (ATMS) (de Kleer, 

1986). We extended the ATMS with an input translator 

that constructed ATMS rules based on PDDL+ processes 

and events. This approach had the benefits of being well-

founded and relatively easy to perform, but the 

disadvantage of relatively poor performance. 

For creation of plans, ARTUE uses the SHOP2 

Hierarchical Task Network planner (Nau et al. 2003), 

which is efficient and easily modifiable. We extended 



SHOP2 with the capability to incorporate process and 

event models into its prediction and search mechanisms. 

See (Molineaux et al., 2010b) for a comprehensive 

discussion and analysis of these extensions. The extended 

SHOP2 provided the plans and predictions needed in the 

first step of the GDA cycle. 

A component responsible for monitoring and checking 

the state for discrepancies (the third step of the GDA 

reasoning cycle) was relatively simple to design given the 

standard planning state formalism of SHOP2. A 

bidirectional set difference operation between a prediction 

and an observation provides a list of atoms that either were 

predicted and did not occur, or occurred without being 

predicted.  

Goal formulation, step 5, is perhaps the most novel, and 

least understood step of the GDA cycle. Our second design 

criterion implies that the designer of a GDA agent may not 

know in advance what anomalies will occur, so we did not 

want to provide background knowledge about what goals 

to pick based on individual anomalies. However, forming a 

response goal requires some sort of knowledge about the 

environment and what is important to the agent. In 

response to this need, we designed a rule-based system that 

operates based on the agent’s principles, and creates new 

goals whenever the conditions of a principle match the 

properties of the state. Thus ARTUE can formulate a goal 

for any of the principles defined, which represent high-

level values such as “if people are in danger, help them”, 

or “if a threat exists, remove it”. The problem of specifying 

these principles without knowing what anomalies the agent 

may encounter is still underspecified, and remains an 

interesting open research problem.  

For goal management, the sixth step, we picked a very 

simple strategy, which may provide a useful baseline for 

future work: each goal is associated with an ordinal value, 

called its intensity, and the goal with the highest intensity 

at any given time is selected for planning. 

Design of ARTUE’s Evaluation 

We chose to demonstrate ARTUE in two environments. 

First, the Tactical Action Officer (TAO) Sandbox 

(Auslander et al., 2009) is a training simulator designed for 

use by military officers. Second, Battle of Survival (BoS), 

is a real-time strategy game based on the Stratagus engine 

(Ponsen et al., 2005), which has received attention from 

several of AI research groups. These were selected because 

they both have hidden state, continuous time 

representations, a variety of goals to achieve, and because 

both environments include external (to the agent) 

influences that can change the state. In the TAO Sandbox, 

outside influences include neutral ships and enemy 

submarines which move around on their own, fire 

torpedoes, and lay mines.  In BoS, enemy vehicles move 

and fire upon friendly vehicles.  

Recent evaluations of ARTUE have been based on 

comparing the performance of ARTUE to the performance 

of a set of ablations, on a set of scenarios which test the 

three design criteria introduced earlier. Performance has to 

date been determined using scenario-specific metrics that 

judge the extent to which the initial goals of the system are 

completed, as well as the extent to which ARTUE responds 

in a reasonable way to developing anomalies. Each 

scenario in our evaluations includes a “scheduled” 

anomaly that occurs at a specified time without warning, to 

test criterion 2, “handle unexpected anomalies”. To ensure 

that criterion 3 is also tested, we designed each scenario to 

incorporate an anomaly-based challenge outside the scope 

of the initial goal provided by the scenario. ARTUE can \ 

respond to this challenge only by changing the focus of 

what it’s working on, meaning that ARTUE must form a 

new goal. To ensure that each scenario has sufficiently 

high complexity, thus satisfying criterion 1, each anomaly 

has hidden properties that must be understood in order to 

respond correctly. For example, in the TAO Sandbox’s 

“Iceberg” scenario, an anomaly occurs when a nearby ship 

founders on an iceberg. Responding correctly requires 

ARTUE to save the passengers aboard the vessel, which 

tests the second criterion. The initial goal in this scenario is 

to carry cargo to a nearby destination, so ARTUE must 

change its own goal in order to respond, which tests 

criterion 3. Finally, ARTUE must assume the presence of 

an iceberg to understand that the passengers are 

endangered, which tests criterion 1.  The results of 

evaluations that follow this design are reported in 

(Molineaux et al., 2010a) and (Klenk et al., in submission). 

Conclusion 

ARTUE is successful, in terms of meeting the criteria 

we initially established. However, its design suggests 

several issues that have not been considered. One 

important unaddressed issue is that of stochastic 

environments. ARTUE was not written with extension to 

probabilistic tasks in mind, and this choice influenced 

many later design choices. A new architecture based on the 

same design criteria and a probabilistic foundation would 

provide an interesting comparison. Second, ARTUE 

currently incorporates no learning faculties. In particular, it 

would be interesting to investigate whether it is possible to 

learn any background knowledge or heuristics for goal 

formulation. Third, the space of knowledge for supporting 

goal formulation is still only shallowly explored. What 

structures beyond principles are interesting and useful? We 

hope that other researchers will find these design questions 

interesting, and that future research in this area will push 

the frontiers of autonomy. 
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