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Abstract. Mine countermeasures (MCM) and Unmanned Combat Logistics 

(UCL) missions take place in very complex and uncertain environments which 

poses complexity for planning and explanation algorithms.  In order to keep a 

mission on target, constant monitoring and frequent schedule adjustments are 

needed. To address this capability gap, we have developed the Case-Based Dis-

ruption Monitoring and Analyzing (CDMA) algorithm. The CDMA algorithm 

automatically detects disruptions within a mission and attempts to determine pos-

sible root causes. Once confirmed, our second developed algorithm, CLOSR 

modifies existing schedules to compensate for these root causes. Evaluation of 

CDMA on simulated MCM operations demonstrates the effectiveness of case-

based strategy. 

1 Introduction 

Unforeseen disruptions occur when planning in the real world. When monitoring for 

such disruptions and providing an explanation as to why the disruption occurs, better 

insight is provided in order to fix the plan. Mine Countermeasure Missions (MCM) for 

example, uses planning constantly. MCM planning uses a variety of resources and each 

resource has its own set of capabilities and operational constraints, as well as charac-

teristic failure points.  

Mine Countermeasure Missions (MCM)  missions must respond to frequent disrup-

tions, and recovering to these disruptions can be complex. MCM missions involve the 

location, identification, and neutralization of enemy explosive ordnance in a maritime 

context. This is key to naval power projection and sea control, two core capabilities of 

U.S. maritime power, as characterized by A Cooperative Strategy for 21st Century Sea-

power [4]. Due to high complexity and uncertainty when scheduling MCM missions, 

accurate plans must be created and frequently revised once a mission has started. Fre-

quent disruptions in MCM operations can occur due to many types such as: changes in 

sea state, visibility, weather, equipment failure, etc. Situations like these interfere with 

resource availability and/or readiness. Therefore, schedules for MCM operations re-

quire frequent changes and updates where the disruptions are monitored in order to 

keep the success of the mission. Current practice calls for manually observing all in-

coming data for detection of issues that could cause a mission to fail. The manual pro-

cess prevents thorough exploration of disruptions. 



Unmanned Systems have shown their value in combat operations by keeping warf-

ighters from harm’s way and delivering unprecedented mission performance [11]. The 

increase in the volume of their deployments has been exponential. For some unmanned 

vehicles, 4-8 operators can be required to command a mission [11]. In addition to this 

scalability problem, complex mission plans need created. These plans require multiple 

vehicles, crews, and equipment in order to complete the mission. This requires changes 

throughout the mission and again a manual process to tediously re-align the components 

of the mission for success.  

To meet both needs, we are developing a system for both MCM and UCL operation 

decision making and planning support called KRePE. KRePE builds upon a foundation 

of cognitive architecture components and algorithms to perform the real-time monitor-

ing, analysis, and rescheduling tasks that MCM planners and UCL operators perform 

on a frequent basis. KRePE is the first systems to support interactive rescheduling of 

entire MCM and UCL operations.  

In this paper, we discuss the challenges of continuous situation monitoring, and root 

cause analysis of mission disruptions through case-based reasoning. We close with an 

empirical study that demonstrates this effective real-time anomaly detection in order to 

generate schedule modifications that achieve mission success.   

2 Mine Countermeasures Mission Scheduling & Operations 

MCM operations involve the location, identification, and neutralization of sea mines 

[5]. These operations employ surface vehicles, aircraft, divers, and unmanned vehicles, 

and can take weeks to plan and execute. While the operations are taking place, they are 

disrupted early and often by events such as unforeseen weather conditions, technolog-

ical failures, and incorrect enemy course of action estimations. While technology exists 

to automatically create an initial schedule, distribute tasks, and track task completion, 

the critical monitoring and rescheduling tasks have been, to date, poorly supported [6].  

MCM operations involve a unique set of specialized tasks that must be scheduled to 

minimize the risk to ships from sea mines. What follows is a brief description of the 

tasks in an MCM operation and their characteristics. The schedule for an MCM opera-

tion tasks multiple vehicles to repeatedly hunt and/or sweep subsections of a specified 

threat area where mines are expected, slowly transiting back and forth in a lawnmower-

like search pattern, until the risk of remaining mines is reduced to an acceptably low 

level. The paths followed by these search vehicles are referred to as tracks.  

Hunting is a search and destroy activity that encompasses, use of specialized sensors 

to find underwater objects that are mine-like, identification of mine-like objects as 

mines or non-mines, and neutralization of all discovered mines. The probability of de-

tection describes the equipment’s sensitivity within that range to the size and reflectiv-

ity of mine casings. Because mines may be missed, missions are commonly evaluated 

according to a percent clearance objective. Percent clearance is defined as the proba-

bility that a mine at any given position in the search area will be detected.  

Sweeping is an activity that uses specialized apparatus to destroy all mines present 

in a given area either by cutting the chains that connect them to the ocean floor or 



employing signal generators which mimic the magnetic and acoustic signatures, of 

ships, to trigger mines that are activated by those signatures. 

The operation schedule, which may consist of hundreds of tasks of heterogeneous 

types, must be repeatedly adjusted over the course of the operation in response to un-

expected events which invalidate it. The task of keeping the schedule up to date despite 

hundreds of interrelated tasks is complex, difficult, and laborious, particularly given the 

constant time pressure of typical operations. Modifications to schedules are kept to a 

minimum, in order to reduce expense and opportunities for error; we refer to this char-

acteristic as minimal operational disruption. However, modified schedules must also 

fulfill operational requirements such as percent clearance, time limits, and risk to equip-

ment. These difficult tasks (i.e., monitoring, response, and rescheduling) can be greatly 

aided by new computational tools. 

3 Unmanned Logistical Combat Systems 

Unmanned systems have been frequently demonstrated in combat operations, where 

they keep warfighter personnel from harm and delivering unprecedented mission per-

formance [11].  Unmanned system applications range from enhanced battlespace 

awareness, to logistics support. Unmanned Combat Logistics (UCL) missions focus on 

resource management and delegation among battlefields and stationed posts. While the 

operations are taking place, disruptions can take place by events such as unexpected 

fuel loss, technological failures, and unavailable crew members needed for cargo un-

loading. UCL missions involve tasks that must be scheduled to distribute resources 

while making sure schedule conflicts between requests do not exist.  

4 CDMA 

One way to reduce the burden on MCM and UCL operators is to help with constant 

monitoring of disruptions that will impact the mission. Constant monitoring of a vast 

array of disruption types can be quite difficult. In addition to detecting the disruption, 

diagnosing the root cause of the problem can be daunting, or easily overlooked. Case-

Based Disruption Monitoring and Analyzing (CDMA) handles both disruption moni-

toring and providing possible root causes.  

Case-based reasoning (CBR) is a problem solving paradigm that relies on general 

knowledge of a problem domain along with specific knowledge examples, or cases. 

These cases consist of a mapping between problems and a solution. When a new prob-

lem is introduced, generally CBR systems maps this new problem to the most similar 

problem case already stored in its knowledge base and provides a solution associated 

with the known problem. We describe the knowledge representation and the CDMA 

algorithm in detail in the following subsection.  



4.1  CDMA Representation 

CDMA uses case-based reasoning for monitoring and analysis of disruptions that 

will impact an ongoing operation. Based on current assumptions and observations of 

the world, the CDMA algorithm determines if a disruption has occurred. A disruption 

case in our system consists of three parts: the problem, solution aid, and a solution. The 

problem consists of two parts: violated expectations and parameters. The solution aid 

consists of three parts; the root cause likelihood, root cause questions and parameters. 

And lastly, the solution consists of new assumptions and parameters.  

The problem is specified as a list of violated expectations and a list of variable pa-

rameters. The case applies when all of the violated expectations are met; and the pa-

rameters indicate which variables are applied to a specific problem instance. An exam-

ple problem representation is shown in Figure 1. In this example, there is disruption 

where the operator has not heard from unit within the past 15 minutes while it was out 

in the field performing a task.  

The solution aid consists of a likelihood and list of root cause questions. This infor-

mation can be accessed by an operator through an interactive decision making process. 

The likelihood provides an apriori probability of how likely a particular root cause is 

for a given disruption. The root cause questions provide a set questions that can help 

the operator deduce what is causing the disruption. The parameters that were used in 

the problem aspect of the case populates the variables within the questions, detailing 

the questions to a specific unit, piece of equipment, etc. If these questions are answered, 

the likelihoods for the root causes adjust to this information. Using the example from 

above, Figure 1 provides the entire case representation.  

The solution is specified as a list of new assumptions and a list of variable parame-

ters. The new assumptions are a set of suppositions or beliefs as to which root cause 

explains the disruption. The parameters are those from the violated expectations instan-

tiating the problem information into these new assumptions.  

 

 

Fig. 1. Case Representation for CDMA algorithm. 

With the use of a standard relational database called the Integrated Rule Inference 

System (IRIS)[8], CDMA can reuse case(s) in the problem space without having to 

generate new cases for each set of parameter values. From the example, we do not need 

to create new cases for each type of equipment or unit, as it can handle all of the pa-

rameters. When monitoring detects a disruption, it alerts operators with a message. Af-

ter alerting the operator, CDMA adds the confirmed root cause assumptions to the 

knowledge base. These new assumptions trigger schedule repair to occur because the 

disruption affects the mission.  

 



 

Fig. 2. Workflow for CDMA algorithm. 

4.2 CDMA Algorithm 

CDMA performs the following steps for disruption monitor and analysis as shown 

in Figure 2: 

1. Find Relevant Case: To find a possible disruption, CDMA searches through the list 

of cases finding a relevant case that matches a violated expectation. Each case that 

matches provides a possible root cause for the disruption. 

2. Construct Analysis Using Case Solution: To analyze a disruption, the parameter 

values indicated by a specific violated expectation are substituted for the variable 

parameters specified by an individual case problem.  

3. Return Analyses: Each possible disruption is provided on screen for the user to re-

view, detailing the types of root causes for the disruption, along with additional in-

formation such as root cause tests and likelihood for each cause.  

4. Adapt Analyses Based on Responses: Optional step and can be repeated. Users can 

answer these root cause test questions in order to better understand the disruption, 

adjusting the likelihoods of the root causes.  

5. Return Analyses: If Step 4 is performed, the system returns updated likelihoods, 

sorted with highest likelihood first, along with clearing out infeasible causes.  

6. Add New Assumptions about World State: After confirming, the selection of a root 

cause for a disruption creates new assumptions about the world and why the disrup-

tion occurred. These new assumptions are added into the knowledge base of the 

agent, providing new information that can be used to generate schedule repair if nec-

essary.  

5 CLOSR  

To repair schedules that meet the criterion of minimal operation disruption, we use the 

Case-Based Local Schedule Repair (CLOSR) algorithm [10]. After CDMA creates new 



assumptions, the CLOSR algorithm uses a case-based strategy to apply previously gen-

erated schedule minimally disruptive schedule repairs. Subsequent to case reuse, an 

adaptation process examines and resolves conflicts created by the schedule repair pro-

cedure. This algorithm is useful for its speed and flexibility. For more detail, please see 

prior work. 

6 Evaluation  

We hypothesize that the discrepancy monitoring and analysis capabilities of CDMA 

are both necessary and sufficient to achieve stated objectives despite the occurrence of 

disruptive events. To demonstrate this, we ran the CDMA algorithm in an automated 

manner on a series of simulated MCM and UCL operations. For each, we measured and 

compared the performances of three decision makers: (1) a decision maker that ignores 

all alerts and keeps the original schedule, (2) a decision maker that acknowledges dis-

ruptions and chooses a random root cause from those suggested and (3) a decision 

maker that acknowledges the disruptions and chooses the root cause with the highest 

likelihood. The contrast indicates the performance improvement that can be achieved 

by adopting the recommendations made by the CDMA algorithm.  

Our study examines an MCM mission with a mine clearing objective. As it is im-

possible to ensure that 100% of mines are removed in the real world, missions are 

planned to achieve a high level of percent clearance. This means that there is a high 

chance that a mine at any given point in the search area would be observed if it existed. 

The operations conducted in our study are intended to achieve a 95% clearance level; 

in other words, we would expect 95% of the mines present to be removed. We hypoth-

esize that the decision maker using KRePE case-base will achieve these performance 

objectives, and that the decision maker that ignores the disruptions will not. This will 

demonstrate both that monitoring and analyzing disruptions is necessary to achieve an 

acceptable level of performance under simulated conditions, and that the system is suf-

ficient to achieve that performance. 

For a UCL mission for unmanned aircraft with resource management objectives, we 

hypothesize that the decision maker using KRePE’s CDMA algorithm will achieve mis-

sion objectives, and that the decision maker that does not reschedule will not. This will 

demonstrate both that monitoring and analyzing disruptions is necessary to achieve an 

acceptable level of performance under simulated conditions, and that the system is suf-

ficient to achieve that performance. 

6.1 Experimental Framework 

A simulator for MCM operations, Search and Coverage Simulator (SCSim), was 

developed at Knexus Research Corporation to support rapid and repeated evaluation 

and testing of MCM decision support systems and component algorithms. SCSim sim-

ulates search missions involving multiple heterogeneous search units, including ships 

and helicopters, each with different available equipment configurations. Mines and 

mine-like objects are distributed randomly by SCSim in fields and lines according to 

pre-set distributions with variable density and object counts. This facilitates evaluation 



of algorithm performance under varying operating conditions. As a benchmark, auto-

mated testing of a two month operation takes less than one minute. 

SCSim simulates the assignment of parameterized tasks to units according to a 

schedule, including transit, sweep, and hunt tasks. Task parameters include, for exam-

ple, the equipment to use for sweeping, and sensor depth for hunting. To simulate a 

mission, SCSim automatically generates appropriate tracks for each task and simulta-

neously changes the position of each vehicle along its assigned tracks. Observations 

(e.g., contacts) are generated based on vehicle’s positions and the sensor equipment in 

use. Interactions of deployed sweeping equipment is also simulated, and changes the 

internally represented status of mines. In addition to the scheduled tasks, SCSim is re-

sponsible for simulating random events, the unexpected difficulties that invalidate an 

existing schedule. Examples of such events include equipment failure, bad weather, and 

operator errors.  

An individual mission test using SCSim is controlled by a scenario description. Sce-

nario descriptions include, at a minimum, the vehicles and equipment available for use, 

threat areas to be cleared of sea mines, and task areas where vehicles will operate. Other 

elements of the scenario specify random distributions for mine like objects, mine line 

placements, and events that may occur. To mimic the real world as closely as possible, 

SCSim provides only partial observations for the purposes of rescheduling. For exam-

ple, when a helicopter’s communications system fails, its position is no longer reported 

to the system. As a result, the helicopter appears not to move. 

Experiments in KRePE are driven by a test harness that integrates with SCSim as 

shown in Figure 3. The test harness takes scenario parameters as input, which specify 

the area of operations, available assets, and the ranges of random experimental varia-

bles, such as what mine types will be deployed and when events will trigger. The Test 

Generator uses these parameters to generate a set of random scenarios. The Test Runner 

enacts each scenario by initializing SCSim and an appropriate Decision Maker that acts 

as a user of the system. Each decision maker encodes different responses to situations, 

such as alerts, that arise during the mission simulation. To compare the performance of 

different decision makers, every decision maker is run through the same pool of ran-

domly generated scenarios. As each simulated mission completes, metrics are collected 

and recorded. After all simulated missions are complete, the Performance Evaluator 

tabulates and summarizes these results in a human readable form. 

 



Fig. 3. KRePE simulation driven evaluation 

6.2 KRePE UCL Setup and Results 

A simulator for UCL operations, Anomaly Detection and Recovery for Unmanned 

Systems Simulator (ADRUSSim), was developed at Knexus Research Corporation to 

support rapid and repeated evaluation and testing of UCL decision support systems and 

component algorithms. ADRUSSim simulates combat logistics missions involving 

multiple heterogeneous Unmanned Aerial System (UAS) units, each with different 

available equipment configurations.  

ADRUSSim simulates the assignment of parameterized mission requests to units 

according to a schedule, including retrieving cargo and delivering cargo and returning. 

Task parameters include, for example, the destination and resources used in a mission. 

To simulate a mission, ADRUSSim automatically generates appropriate schedules for 

each mission request. Observations about the world are generated based on vehicles' 

positions and the sensor equipment in use. In addition to simulating scheduled tasks, 

ADRUSSim is responsible for simulating random events, the unexpected difficulties 

that invalidate existing schedules, such as equipment failure, fuel loss, and unavailable 

crew for unloading cargo.  

The KRePE system thus far demonstrates that having the CDMA algorithm in place 

monitors and detects disruptions along with providing schedule fixes for these disrup-

tions. Preliminary test runs indicate that missions are more often successful when these 

schedule repairs are conducted. However, we have yet to run experiments to confirm 

this hypothesis statistically.  

6.3 KRePE Experiment Setup 

Our KRePE experiments used three decision makers and ten randomly generated test 

scenarios. The first decision maker, “KRePE DM”, confirms the correct root cause with 

the highest disruption likelihood and selects a new schedule from those generated to 

activate. The second decision maker, “Random DM”, randomly chooses a root cause 

and selects a new schedule from that root cause. The third decision maker, our baseline, 

“Ignore DM”, ignores KRePE’s recommendations, never changing its schedule when 

prompted. Comparing performance of these three decision makers allows us to measure 

the efficacy and correctness of schedules generated by case-base disruption monitoring 

system. 

The performance of each decision maker was evaluated in each of the ten randomly 

generated scenarios, generated as summarized in Table 1. Scenarios differ primarily in 

the thirty random events that occur, and the positions of mines and mine-like objects. 

Each event was additionally parameterized with a trigger time (chosen randomly over 

the first six-hundred hours of the mission) and target unit (chosen randomly among the 

six tasked assets). The times were chosen in this fashion because events that occur when 

a unit has already performed all its tasks cause no problems, and therefore are uninter-

esting to our study. Four mine lines at various depths and mine types were placed ran-

domly in each scenario, each with a length (i.e., mine count) between ten and thirty.  



The fixed parameters used in all scenarios included the area searched, and seven 

assets, consisting of four helicopters, two MCM ships, and one support ship that per-

forms no tasks itself. Each ship and helicopter has available equipment for hunting 

mines, contact sweeping, detection, and mine neutralization.  

6.4 KRePE Metrics 

We evaluated KRePE DM, Random DM, and Ignore DM using the following three 

metrics: (1) Percent contacts detected: This measures the percentage of mines detected 

by a unit; (2) Percent mines neutralized: Percentage all mines are neutralized by a unit; 

(3) Operation duration: Total simulation time required to complete the operation. 

The first two metrics are calculated based on the true number of mines and mine-

like objects generated in the scenario. These summarize the plan’s effectiveness in 

terms of how well the MCM mission goal of searching for and eliminating mines was 

achieved. Each scenario generated includes a large number of non-mine mine-like ob-

jects uniformly spread throughout the threat area, so the percent contacts detected value 

is an approximation of the percent clearance, or probability that a mine would be de-

tected at any given location. The third metric, operation duration, illustrates a plan’s 

efficiency by measuring the total simulation time required to complete all tasks. 

6.5 KRePE Results 

Experiments were run on an i7 processor laptop, taking one hour to complete. The 

results of our experiments are summarized below. Figure 4 shows a scatter plot that 

displays the percentage of existing contacts that were detected and duration of each 

mission operation. It is clear that the duration of an operation performed by Ignore DM 

varies little, as the original schedule is never updated, whereas the duration of KRePE 

DM and Random DM missions may vary greatly. A schedule can be lengthened dra-

matically when new mine types have been discovered; to ensure safety, many new hunt 

and/or sweep tasks must be introduced to clear the additional mines. Similarly, if vehi-

cles are damaged beyond repair, the diminished resources can greatly increase mission 

length. The increased time and repaired schedules allow KRePE DM to outperform 

Ignore DM by classifying between 95 and 100% of the mine like objects in every mis-

sion. Random DM, like KRePE DM, responds to disruptions, but because it does not 

choose the most likely cause, its task performance is not as high as KRePE DM's. Note 

that neither Ignore DM nor Random DM represents any real human decision maker; 

rather these results should be interpreted to show the difficulty of the task and that 

CDMA’s suggestions are benefitting mission performance.  

Table 1 shows the average and standard deviation for each metric and decision 

maker, along with a confidence value. These confidence values are obtained from a 

one-tailed t-test with paired examples, and indicate the (small) likelihood that Ignore 

DM might on average achieve higher values than KRePE DM if many more experi-

ments were undertaken.  



 

Fig. 4. Scatter Plot of Operation Duration to Percent Contacts Detected 

Table 1. KRePE Results 

 

7 Related Work 

Case-based reasoning [1] is a family of intelligent algorithms based on the adaptation 

and application of known solutions to new problems. It has been applied to many dif-

ferent domains and problems besides real-time discrepancy detection.  

DISCOVERHISTORY [9] looks for explanations of observations through abductive rea-

soning, where it goes from an observation to a hypothesis that accounts for the obser-

vation. DISCOVERHISTORY has shown to be effective over a large problem space, it is 

however slow. Its speed is likely not sufficient for real-time detection of immediate 

issues required by Unmanned Combat Logistics missions.  

A case-based reasoning system, CHEF [7] creates food recipes and explains its own 

failures. The system tries strategies to see which one can be used to fix the recipe plan. 

CHEF uses causal rules to explain why its own plan fails. However, the system does 

not handle constrained resources present in a typical scheduling problem.  

The system described in [3] is a CBR system that focuses on wartime equipment 

maintenance by analyzing feature sets of equipment for maintenance. The system re-

moves a user input for deciding the quality of the equipment. CDMA, in contrast,  sup-

ports a “man-in-the-loop” in order to allow operators to have control over what should 

be done about disruptions. 

8 Conclusion 

We presented the CDMA algorithm that supports real-time monitoring for disruptions, 

disruption analysis, and rescheduling of tasks in both mine countermeasures and un-

manned combat logistics operations. Scheduling in these domains is challenging due to 

the complexities resulting from a large number of tasks that must be allocated over 



numerous resources. CDMA includes components that assist operation planners by 

constantly monitoring the environment for changes, providing analysis of discrepan-

cies, and recommending alternative repaired schedules. We introduced the requirement 

of minimally disruptive repair as a key operational requirement for automatic schedule 

repair algorithms in MCM applications. 

Our results indicate the efficacy of a case-based strategy; schedule repair was rapid, 

and created new schedules on demand that ensured the elimination of all mines and 

increased clearance to a reasonable level. This presents a novel and measurable increase 

in automated MCM and UCL rescheduling capabilities. In the future, we want to further 

our UCL domain in order to demonstrate effective case-base disruption monitoring with 

Unmanned Combat Logistics missions.  
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