

Applying Goal Driven Autonomy to a Team Shooter Game

Héctor Muñoz-Avila
1
, David W. Aha

2
, Ulit Jaidee

1
, Matthew Klenk

2
, & Matthew Molineaux

3

1Department of Computer Science & Engineering; Lehigh University; Bethlehem, PA 18015

 2Navy Center for Applied Research in Artificial Intelligence; Naval Research Laboratory (Code 5514); Washington, DC 20375
3Knexus Research Corporation; Springfield, VA 22153

munoz@cse.lehigh.edu | david.aha@nrl.navy.mil | ulj208@lehigh.edu | klenk@aic.nrl.navy.mil | matthew.molineaux@knexusresearch.com

Abstract

Dynamic changes in complex, real-time environments, such
as modern video games, can violate an agent’s expectations.
We describe a system that responds competently to such
violations by changing its own goals, using an algorithm
based on a conceptual model for goal driven autonomy. We
describe this model, clarify when such behavior is
beneficial, and describe our system (which employs an HTN
planner) in terms of how it partially instantiates and
diverges from this model. Finally, we describe a pilot
evaluation of its performance for controlling agent behavior
in a team shooter game. We claim that the ability to self-
select goals can, under some conditions, improve plan
execution performance in a dynamic environment.

 Introduction

AI researchers have repeatedly acknowledged the limiting
assumptions of classical algorithms for automated planning
(Ghallab et al., 2004; Nau, 2007). For example, they
assume static environments (where changes in the
environment are due only to the planner’s actions), off-line
planning (where the planner does not monitor execution),
and that all goals are fixed/unchanging. Naturally, these
assumptions do not always apply. For example, team
shooter games are dynamic environments that are
populated by multiple agents resulting in exogenous
events. Also, the agents must perform online planning by
executing their plans during the game. Finally, the goals of
the game change as the game state changes (e.g., if a win is
infeasible, then the agent should attempt to gain a draw).

We present a system, GDA-HTNbots, which reasons
about the events occurring in its environment, changes its
own goals in response to them, and replans to satisfy these
changed goals. To do this, GDA-HTNbots constantly
monitors its environment for unexpected changes and
dynamically formulates a new goal when appropriate.

In this paper, we briefly summarize related research,
review a conceptual model for goal driven autonomy

Copyright © 2010, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

(GDA) (Klenk et al., 2010), describe GDA-HTNbots as a
partial instantiation of this model, and present a limited
empirical study of its performance. The results support our
primary claim: agent performance in a team shooter
domain with exogenous events can, for some conditions,
be improved through appropriate self-selection of goals.

Related Work

Plan generation is the problem of generating a sequence of
actions that transform an initial state into some desired
state (Ghallab et al., 2004). GDA-HTNbots controls plan
generation in two ways: first, it determines when the
planner must start working on a new goal. Second, it
determines what goal the planner should attempt to satisfy.

A considerable amount of research exists on relaxing the
assumptions of classical planning. For example,
contingency planning permits dynamic environments
(Dearden et al., 2003). Agents that use this approach create
a plan that assumes the most likely results for each action,
and generate contingency plans that, with the help of
monitoring, are executed only if a plan execution failure
occurs at some anticipatable point(s).

Another assumption of classical planning concerns the
set of goals that the agent is trying to achieve. If no plan
exists from the initial state that satisfies the given goals,
then classical planning fails. Partial satisfaction planning
relaxes this all-or-nothing constraint, and instead focuses
on generating plans that achieve some “best” subset of
goals (i.e., the plan that gives the maximum trade-off
between total achieved goal utilities and total incurred
action cost) (van den Briel et al., 2004).
While these approaches each relax an important
assumption of classical planning, neither addresses how to
respond to unexpected events that occur during execution.
One straightforward solution is incremental planning,
which plans for a fixed time horizon. After plan execution,
these planners then generate plans for the next horizon.
This process iterates until the goal state is reached. Another
approach is dynamic replanning, which monitors the plan’s
execution. If it is apparent that the plan will fail, the
planner will replan from the current state. For example,

HOTRiDE (Ayan et al., 2007) employs this strategy for
non-combatant evacuation planning. These approaches can
also be combined. For example, CPEF (Myers, 1999)
incrementally generates plans to achieve air superiority in
military combat and replans when unexpected events occur
during execution (e.g., a plane is shot down).

However, these approaches do not perform goal
formulation; they continue trying to satisfy the current
goal, regardless of whether their focus should dynamically
shift towards another goal (due to unexpected events).

Fortunately, some other recent research has addressed
this topic. For example, Coddington and Luck (2003)
bestowed agents with motivations, which formulate goals
in response to thresholds on specific state variables (e.g., if
a rover’s battery charge falls below 50%, then a goal of full
battery charge will be formulated (Meneguzzi & Luck,
2007)). Here we adopt an alternative rule-based approach
whose antecedents can match to complex games states.

Research on game AI takes a different approach to goal
formulation in which specific states lead directly to
behaviors (i.e., sequences of actions). This approach is
implemented using behavior trees, which are prioritized
topological goal structures that have been used in HALO 2
and other high profile games (Champandard, 2007).
Behavior trees, which are restricted to fully observable
environments, require substantial domain engineering to
anticipate all events. GDA can be applied to partially
observable environments by using explanations that
provide additional context for goal formulation.

Cox’s (2007) work inspired the conception of GDA,
with its focus on integrated planning, execution, and goal
reasoning. We extend this concept here in multiple ways,
including by embedding it in the context of adversarial
gaming environments.

Goal Driven Autonomy

Goal-driven autonomy is a process for online planning in
autonomous agents (Klenk et al., 2010). Figure 1 illustrates
how GDA extends Nau’s (2007) model of online planning.
The GDA model primarily expands and details the scope
of the Controller, which interacts with a Planner and a
State Transition System Σ (an execution environment). We
present only a simplified version of this model, and our
system is only a partial implementation of this model.

System Σ is a tuple (S,A,V,γ) with states S, actions A,
exogenous events V, and state transition function γ:
S(AV)2

S
, which describes how the execution of an

action or the occurrence of an event transforms the
environment from one state to another. For example, given
an action a in state si, γ returns the updated state si+1.

The Planner receives as input a planning problem
(MΣ,sc,gc), where MΣ is a model of Σ (the environment), sc
is the current state, and gcG is a goal that can be satisfied
by some set of states SgS. The Planner outputs a plan
pc={Ac,Xc}, which is a sequence of actions Ac=[ac,…,ac+n]
paired with a sequence of expectations Xc=[xc,…xc+n].
Each xiXc is a set of state constraints corresponding to

Figure 1: A Conceptual Model for Goal Driven Autonomy

the sequence of states [sc,…,sc+n] expected to occur when
executing Ac in sc using MΣ.

The Controller sends the plan’s actions to Σ and
processes the resulting observations. The GDA model
takes as input initial state s0, initial goal g0, and MΣ, and
sends them to the Planner to generate a plan p0 consisting
of action sequence A0 and expectations X0. When executing
A0, the Controller performs the following four knowledge-
intensive tasks, which distinguish the GDA model:

1. Discrepancy detection: This compares the observations
sc obtained from executing action ac-1 in state sc-1 with
the expectation xcX (i.e., it tests whether any
constraints are violated, corresponding to unexpected
observations). If one or more discrepancies DcD is
found, then they are given to the following function.

2. Explanation generation: Given a state sc and a set of
discrepancies DcD, this hypothesizes one or more
explanations ecE of Dc’s cause(s), where e is a belief
about (possibly unknown) aspects of sc or MΣ.

3. Goal formulation: This creates a goal gcG in response
to a set of discrepancies Dc, given their explanation
ecE and the current state scS.

4. Goal management: Given a set of existing/pending
goals GG (one of which may be the focus of the
current plan execution) and a new goal gcG, this may
update G to create G (e.g., by adding gc and/or
deleting/modifying other pending goals) and will select
the next goal gG to be given to the Planner. (It is
possible that g=g .)

GDA makes no commitments to specific types of
algorithms for the highlighted tasks, and treats the Planner
as a black box. This description of GDA’s conceptual
model is necessarily incomplete due to space constraints.
For example, it does not describe the reasoning models
used by Tasks 1-4 (each of which may perform substantial
inferencing) nor how they are obtained, it assumes multiple
plans are not simultaneously executed, and it does not

address goal management issues such as goal prioritization
or goal transformation (Cox & Veloso, 1998). However,
this description should suffice to frame the general model,
which we use to implement our system, GDA-HTNBots.

The Domination Game (DOM)

In this paper, we describe a simple GDA system and its
application to controlling a set of agents’ actions in a team
shooter game, called DOM. In DOM games, two teams (of
multiple agents) compete over specific locations in the
game world called domination locations. A team receives a
point for every five seconds that each domination location
remains under its control (i.e., when the only agents in that
location are members of their team). The game is won by
the first team to score a pre-specified number of points.

Domination games are interesting because individual
deaths have no direct impact on the final score; any agent
that is killed will continue playing after a short pause,
starting in a new location (this is called respawning). This
allows for an overall strategy and organization to have a
large impact on game play.

DOM is a good test for GDA systems because its
environment is dynamic: the world changes due to the
opponent’s actions, which our system cannot predict. Also,
some actions in the game are non-deterministic (e.g.,
adjudicating when members of two teams shoot each
other). Hence, our system must react to unexpected events
and dynamically generate new plans that satisfy different
goals. Manually engineering these plans a priori is
difficult, and infeasible for suitably complex task
environments. GDA removes the need to create these
beforehand by providing an agent with the ability to reason
about its goals and dynamically determine which to pursue.

A Goal Driven Autonomy System

GDA-HTNbots is an extension of HTNbots (Hoang et al.,
2005) in which the Controller performs the four tasks of
the GDA model. HTNbots uses SHOP (Nau et al., 1999) to
generate game-playing strategies for DOM based on an
external hierarchical task network (HTN). These strategies
are designed to control a majority of the domination
locations in the game world. Whenever the situation
changes (i.e., when the owner of a domination location
changes), HTNbots generates a new plan. Therefore,
HTNbots is a dynamic replanning system. It calls SHOP to
find the first method that is applicable to a given task, and
uses it to generate subtasks that are recursively
decomposed by other methods into a sequence of actions to
be executed in the environment.

Unlike HTNbots, GDA-HTNbots reasons about its
goals, and can dynamically formulate which goal it should
plan to satisfy. GDA-HTNbots extends HTNbots to
instantiate the GDA conceptual model as follows:

State Transition System (Σ) (task environment): We apply
GDA-HTNbots to the task of controlling an agent playing

DOM. We described this task and game environment in the
preceding section, and describe an example of this
application in the next section.

Model of the State Transition System (MΣ): We describe
the state transition function for DOM using SHOP axioms
and operators. Exogenous events are not directly modeled
in SHOP. HTNbots play DOM by monitoring the game
state and replan as needed.

Planner: GDA-HTNbots uses SHOP, although other
planners can be used. Given the current state sc (initially
s0), current goal gc (initially g0), and MΣ, it will generate an
HTN plan pc designed to achieve gc when executed in Σ
starting in sc. This plan includes the sequence of
expectations Xc determined by the HTN’s methods that are
anticipated from its execution.

Discrepancy Detector: This continuously monitors pc’s
execution in Σ such that, at any time t, it compares the
observations of state st provided by Σ with the expected
state xt. If it detects any discrepancy dt (i.e., a mismatch)
between them, then it outputs dt to the Explanation
Generator.

Explanation Generator: Given a discrepancy dt for state st,
this generates an explanation et of dt. GDA-HTNbots tracks
the history of the game by counting the number of times
agents from the opposing team have visited each location.
Using this information and the discrepancy dt, GDA-
HTNbots identifies an explanation et, which is the strategy
that the opponent is pursuing.

Goal Formulator: Given an explanation et representing the
opponent’s current strategy, GDA-HTNbots formulates a
goal gt using a set of rules of the form:

 if e then g

The new goal gt directs GDA-HTNbots to counter the
opponent’s strategy.

Goal Manager: GDA-HTNbots employs a trivial goal
management strategy. Given a new goal gt, it immediately
selects this as the current goal, which the Controller
submits to the Planner for plan generation.

Example in the DOM Game

In this paper, we report on a case study in which the
system’s task is to control a team of agents in DOM.
Figure 2 shows an example of a map in a domination game
with five locations. Our scenario began with the following
initial state and goal:

Initial State (s0): This includes the locations of all the
agents in the game and which team (if any) controls each
domination location.

Initial Goal (g0): The initial goal is to win the game (i.e.,
be the first to accumulate 20,000 points).GDA-HTNbots
sends g0 to SHOP, which generates a plan to dispatch
GDA-HTNbots’ agents to each domination location and
control them. Given the uncertainties about the opponent’s
actions and the stochastic outcome of engagements, this

Figure 2: An example DOM game map with five domination
locations (yellow flags), where small rectangles identify the
respawning locations for the agents and the remaining two types
of icons denote each player’s agents.

Table 1: Example explanations of discrepancies (with some
expectations and observations shown), and the corresponding
recommended goals.

plan may not yield the expected results. For example,
Table 1 presents some sample explanations for the DOM
game (we do not display the full state due to space
constraints). The first row highlights a situation where the
bot3 agent was expected to be at location 2, but this did not
happen. By examining the history of enemy agents at that
location, GDA-HTNbots assumes the opponent is
executing a strategy to heavily defend location 2. Using the
explanation goal rule set, GDA-HTNbots counters this
strategy by setting a goal to have bot3 at an alternative
location, namely location 1.

The second row shows a discrepancy where GDA-
HTNbots expected to, over the last time period t, earn more
points than the enemy. However, this did not happen
because the enemy controlled two of three (total) locations.
The rule set determines that the next goal should be to
control one of the locations controlled by the opponent
(e.g., loc2). Given this, our system generates a plan to send
two agents to location 2.

This example illustrates how GDA-HTNbots explains
discrepancies by reasoning about the opponent’s strategies.
This enables GDA-HTNbots to formulate goals that
counter the opponent’s actions.

Table 2: Domination Teams and Descriptions

Opponent

Team
Description Diff.

Dom1 Hugger Sends all agents to domination location 0 trivial

First Half Of
Dom Locations

Sends an agent to the first half +1

domination locations. Extra agents patrol

between the 2 locations

easy

2nd Half Of

Dom Locations

Sends an agent to the second half +1

domination locations; extra agents patrol
between the two locations

easy

Each Agent to
One Dom

Each agent is assigned to a different dom.
loc. and remains there for the entire game

med.-
easy

Smart

Opportunistic

Sends agents to each dom. loc. the team
doesn’t own; if possible, it will send

multiple agents to each unowned location

hard

Greedy

Distance

Each turn the agents are assigned to the

closest domination loc. they do not own
hard

Pilot Evaluation

We conducted a pilot study to assess the performance
utility of HTNbots’ GDA enhancements. We claim that
GDA increases our system’s ability to win DOM games
versus a set of opponents. To test this claim, we performed
an ablation study that isolates the GDA functionality.

In particular, we compared the performances of GDA-
HTNbots and HTNbots. Hoang et al. (2005) and Muñoz-
Avila and Hoang (2006) reported that HTNbots performs
well versus several hard-coded opponents. Thus, HTNbots
should provide a good baseline for our evaluation.
However, we expected GDA-HTNbots would outperform
HTNbots for opponents whose behaviors motivate the
dynamic formulation of new goals.

We recorded and compared the performance of these
systems versus the same set of hard-coded opponents. Our
performance metric is the difference in the score between
the system and opponent while playing DOM, divided by
the system’s score.

We ran both systems against each of the six opponents
summarized in Table 2. The first three were the same used
by Hoang et al. (2005) to test HTNbots, which was found
to perform well on them. Hence, these are challenging
DOM opponents for testing whether GDA enhancements
can improve HTNbots’ performance. The final three
opponents were created in subsequent studies of HTNbots
to test reinforcement learning (Smith et al., 2007) and
case-based reasoning (Auslander et al., 2008) algorithms.
Among these, the final two opponents were found to be
particularly difficult to beat. In summary, these opponents
form a challenging and varied testbed to measure the utility
of GDA-HTNbots.

The experimental setup was as follows: Both systems
were tested versus each of these opponents on the map
shown in Figure 2. This is the same map that was used in
the previously mentioned experiments. Each game was run
three times to account for the randomness introduced by
non-deterministic game behaviors.

Discrepancy Explanation Next Goal

xt: Loc(bot3,loc2)

st: Loc(bot3,loc2)

Defended(loc2) Loc(bot3,loc1)

xt: OwnPts(t)>EnemyPts(t)

st: OwnPts(t)<EnemyPts(t)

EnemyCtrl(loc1)

EnemyCtrl(loc2)

OwnCtrl(loc2)

Table 3: Avg. Percent Normalized Difference in Game AI
System vs. Opponent Scores (with avg. scores in parentheses)

Opponent Team

(controls enemies)

Game AI System (controls friendly forces)

HTNbots GDA-HTNbots

Dom1 Hugger 81.2%†

(20,002 vs. 3,759)
80.9%
(20,001 vs. 3,822)

First Half Of Dom
Locations

47.6%

(20,001 vs. 10,485)
42.0%
(20,001 vs. 11,605)

2nd Half Of Dom
Locations

58.4%

(20,003 vs. 8,318)
12.5%
(20,001 vs. 17,503)

Each Agent to One
Dom

49.0%

(20,001 vs. 10,206)
40.6%
(20,002 vs. 11,882)

Smart Opportunistic -19.4%

(16,113 vs. 20,001)
-4.8%

(19,048 vs. 20,001)

Greedy Distance -17.0%

(16,605 vs. 20,001)
0.4%

(19,614 vs. 19,534)

†Bold face denotes the better average measure in each row

The results are shown in Table 3, where each row
displays the normalized average difference in scores
(computed over three games) versus each opponent. It also
shows the average scores for each player. We repeated the
same experiment with a second map and obtained results
consistent with the ones discussed here.

2
 The limited

number of trials in this pilot study prevents us from
computing statistical significance. Therefore, we focus our
discussion on general trends and game analysis.

Discussion

The results can be summarized as follows: Against difficult
opponents (the final two opponents in Table 2), GDA-
HTNbots outperforms HTNbots. Against easy opponents
(the first four listed in Table 2) HTNbots outperforms
GDA-HTNbots. We examined game-play records to
investigate why this occurred, and concluded that the
initial strategy chosen by HTNbots is frequently sufficient
to win the game. For example, the Dom1 Hugger
(opponent) team sends all agents to one location. It is easy
for HTNbots to immediately generate a winning plan
against this strategy and start winning from the outset.
Indeed, in situations where the goals should not be
changed, this implementation of GDA should not be used.
 The more difficult opponents reason about the distance
between the agent locations and the domination locations
as part of their strategy. These strategies are particularly
effective versus HTNbots and GDA-HTNbots, which
encode their knowledge symbolically without metric
information. Indeed, the two hard opponents soundly
defeat HTNbots. The advantage of using a specialized
component to reason about goals becomes apparent in this
study. By tracking which domination locations the
opponent is trying to control and which goal was used to
generate the current plan, GDA-HTNbots can react quickly
to the opponent’s strategy. This allowed GDA-HTNbots to

2
 For the second map we didn’t obtain results for greedy

distance because of some path finding issues.

outperform the Greedy Distance opponent (which
outperformed HTNbots) and almost perform as well as the
Smart Opportunistic opponent.

GDA-HTNbots is simple implementation of the four
GDA tasks. In future research, we plan to study other
methods for each of these tasks. First, during discrepancy
detection, GDA-HTNbots observes discrepancies only
between discrete variables. A more complete system would
consider the continuous attributes of the environment (e.g.,
precise agent locations, health, and score). It would also
represent and reason about relations among these
attributes. Second, the explanation generation process
allows the system to consider reasons for a given
discrepancy. In this paper, our system does not
dynamically derive the explanation using a comprehensive
reasoning mechanism, and it only considers the opponent's
strategy. In open domains, it is important to hypothesize
new entities and events that were not represented in MΣ.
This capability would substantially diverge from current
approaches to online planning. Third, during goal
formulation, GDA-HTNbots uses simple rules to map
explained discrepancies to specific goals. However, not all
discrepancies require goal formulation (e.g., some should
be ignored). A more complete system should reason about
alternative responses to detected discrepancies, such as by
reasoning about game state information. This is the reason
why GDA-HTNbots underperformed versus the easier
opponents compared to HTNbots; if GDA-HTNbots had a
more sophisticated Discrepancy Resolver, it could reason
that a given discrepancy does not warrant goal formulation;
in which case it would continue pursuing the same goal as
selected by HTNbots and, hence, would achieve the same
performance as HTNbots. Finally, GDA-HTNbots
performs only goal replacement during goal management.
This was effective for DOM because it does not require
balancing various goals and focuses solely on defeating an
individual opponent. In more complex environments, a list
of pending goals must be maintained, and the system will
need to consider which goal(s) to pursue at any given time
by reasoning about resources, tradeoffs, and priorities.

In future work, we plan to run more trials, which will
allow us to statistically analyze our claims. In addition, we
will investigate other methods for the four GDA tasks. We
also envision ways in which the background knowledge
used in the GDA process can be learned automatically.
Finally, we will examine the behavior of GDA systems for
tasks in other complex domains that have a greater need to
reason dynamically about which goals to satisfy (e.g., the
TAO Sandbox (Auslander et al., 2009), which is a
simulator used to train Naval officers for decision making
in anti-submarine warfare missions).

Final Remarks

Plan generation is the problem of generating a sequence of
actions that transform the initial state into some goal state
(Ghallab et al., 2004). Goal driven autonomy (GDA)
enhances plan generation by addressing two important

questions. First, it answers when: it determines when the
planner should start working on a new goal. Second, it
answers what: it determines which goal should be satisfied
in response to a detected discrepancy. Our initial
implementation of GDA illustrates this concept. GDA-
HTNbots can interrupt the execution of a strategy based on
an earlier goal, and instead generate and execute a plan that
achieves a different goal that now has higher priority.

Our implementation barely scratches the surface, as it is
a simple instantiation of the GDA conceptual model.
However, our investigation with GDA-HTNbots illustrates
its potential. The DOM game, when played against
challenging opponents, has all of the elements targeted by
GDA: the environment is dynamic, it requires game AI
agents to conduct online planning, and it must constantly
change its goals to perform well (versus the more
challenging opponents). Furthermore, the baseline system,
HTNbots, performed well on this DOM task. Hence, GDA-
HTNbots’ performance improvement versus the more
challenging opponents is encouraging, and we look
forward to assessing a more complete GDA model’s
performance in future work.

Acknowledgements

Thanks to our reviewers. This work was sponsored by
DARPA/IPTO and NSF (#0642882). Thanks to PM
Michael Cox for providing motivation and technical
direction. The views, opinions, and findings contained in
this paper are those of the authors and should not be
interpreted as representing the official views or policies,
either expressed or implied, of DARPA or the DoD.

References

Auslander, B., Lee-Urban, S., Hogg, C., & Muñoz-Avila,
H. (2008). Recognizing the enemy: Combining
reinforcement learning with strategy selection using
case-based reasoning. Proceedings of the Ninth
European Conference on Case-Based Reasoning (pp.
59-73). Trier, Germany: Springer.

Auslander, B., Molineaux, M., Aha, D.W., Munro, A., &
Pizzini, Q. (2009). Towards research on goal reasoning
with the TAO Sandbox (Technical Report AIC-09-155).
Washington, DC: Naval Research Laboratory, Navy
Center for Applied Research on Artificial Intelligence.

Ayan, N.F., Kuter, U., Yaman F., & Goldman R. (2007).
HOTRiDE: Hierarchical ordered task replanning in
dynamic environments. In F. Ingrand, & K. Rajan (Eds.)
Planning and Plan Execution for Real-World Systems –
Principles and Practices for Planning in Execution:
Papers from the ICAPS Workshop. Providence, RI.

van den Briel, M., Sanchez Nigenda, R., Do, M.B., &
Kambhampati, S. (2004). Effective approaches for
partial satisfaction (over-subscription) planning.
Proceedings of the Nineteenth National Conference on

Artificial Intelligence (pp. 562-569). San Jose, CA:
AAAI Press.

Champandard, A. (2007). Behavior trees for next-gen
game AI. In Proceedings of the Game Developers
Conference. Lyon. France.

Coddington, A.M., & Luck, M. (2003). Towards
motivation-based plan evaluation. Proceedings of the
Sixteenth International FLAIRS Conference (pp. 298-
302). Miami Beach, FL: AAAI Press.

Cox, M.T. (2007). Perpetual self-aware cognitive agents.
AI Magazine, 28(1), 32-45.

Cox, M.T., & Veloso, M.M. (1998). Goal transformations
in continuous planning. In M. desJardins (Ed.),
Proceedings of the Fall Symposium on Distributed
Continual Planning (pp. 23-30). Menlo Park, CA:
AAAI Press.

Dearden R., Meuleau N., Ramakrishnan S., Smith, D., &
Washington R. (2003). Incremental contingency
planning. In M. Pistore, H. Geffner, & D. Smith (Eds.)
Planning under Uncertainty and Incomplete
Information: Papers from the ICAPS Workshop. Trento,
Italy.

Ghallab, M., Nau, D.S., & Traverso, P. (2004). Automated
planning: Theory and practice. San Mateo, CA: Morgan
Kaufmann.

Hoang, H., Lee-Urban, S., & Muñoz-Avila, H. (2005).
Hierarchical plan representations for encoding strategic
game AI. Proceedings of the First Conference on
Artificial Intelligence and Interactive Digital
Entertainment. Marina del Ray, CA: AAAI Press.

Klenk, M., Molineaux, M., & Aha, D.W. (2010). Goal
directed autonomy for flexible planning and acting.
Manuscript submitted for publication.

Meneguzzi, F.R., & Luck, M. (2007). Motivations as an
abstraction of meta-level reasoning. Proceedings of the
Fifth International Central and Eastern European
Conference on Multi-Agent Systems (pp. 204-214).
Leipzig, Germany: Springer.

Muñoz-Avila, H., & Hoang, H. (2006). Coordinating
teams of bots with hierarchical task network planning.
In S. Rabin (Ed.) AI Game Programming Wisdom 3.
Boston, MA: Charles River Media.

Myers, K.L. (1999). CPEF: A continuous planning and
execution framework. AI Magazine, 20(4), 63-69.

Nau, D.S. (2007). Current trends in automated planning. AI
Magazine, 28(4), 43–58.

Nau, D.S., Cao, Y., Lotem, A., & Muñoz-Avila, H. (1999).
SHOP: Simple hierarchical ordered planner.
Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (pp. 968-973).
Stockholm: AAAI Press.

Smith, M., Lee-Urban S., & Muñoz-Avila, H. (2007).
RETALIATE: Learning winning policies in first-person
shooter games. Proceedings of the Seventeenth
Innovative Applications of Artificial Intelligence
Conference (pp. 1801-1806). Vancouver, (BC) Canada:
AAAI Press.

