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Abstract 

Dynamic changes in complex, real-time environments, such 
as modern video games, can violate an agent’s expectations. 
We describe a system that responds competently to such 
violations by changing its own goals, using an algorithm 
based on a conceptual model for goal driven autonomy. We 
describe this model, clarify when such behavior is 
beneficial, and describe our system (which employs an HTN 
planner) in terms of how it partially instantiates and 
diverges from this model. Finally, we describe a pilot 
evaluation of its performance for controlling agent behavior 
in a team shooter game. We claim that the ability to self-
select goals can, under some conditions, improve plan 
execution performance in a dynamic environment. 

 Introduction   

AI researchers have repeatedly acknowledged the limiting 
assumptions of classical algorithms for automated planning 
(Ghallab et al., 2004; Nau, 2007). For example, they 
assume static environments (where changes in the 
environment are due only to the planner’s actions), off-line 
planning (where the planner does not monitor execution), 
and that all goals are fixed/unchanging. Naturally, these 
assumptions do not always apply. For example, team 
shooter games are dynamic environments that are 
populated by multiple agents resulting in exogenous 
events. Also, the agents must perform online planning by 
executing their plans during the game. Finally, the goals of 
the game change as the game state changes (e.g., if a win is 
infeasible, then the agent should attempt to gain a draw). 

We present a system, GDA-HTNbots, which reasons 
about the events occurring in its environment, changes its 
own goals in response to them, and replans to satisfy these 
changed goals. To do this, GDA-HTNbots constantly 
monitors its environment for unexpected changes and 
dynamically formulates a new goal when appropriate. 

In this paper, we briefly summarize related research, 
review a conceptual model for goal driven autonomy 
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(GDA) (Klenk et al., 2010), describe GDA-HTNbots as a 
partial instantiation of this model, and present a limited 
empirical study of its performance. The results support our 
primary claim: agent performance in a team shooter 
domain with exogenous events can, for some conditions, 
be improved through appropriate self-selection of goals. 

Related Work 

Plan generation is the problem of generating a sequence of 
actions that transform an initial state into some desired 
state (Ghallab et al., 2004). GDA-HTNbots controls plan 
generation in two ways: first, it determines when the 
planner must start working on a new goal. Second, it 
determines what goal the planner should attempt to satisfy.  

A considerable amount of research exists on relaxing the 
assumptions of classical planning. For example, 
contingency planning permits dynamic environments 
(Dearden et al., 2003). Agents that use this approach create 
a plan that assumes the most likely results for each action, 
and generate contingency plans that, with the help of 
monitoring, are executed only if a plan execution failure 
occurs at some anticipatable point(s). 

Another assumption of classical planning concerns the 
set of goals that the agent is trying to achieve. If no plan 
exists from the initial state that satisfies the given goals, 
then classical planning fails. Partial satisfaction planning 
relaxes this all-or-nothing constraint, and instead focuses 
on generating plans that achieve some “best” subset of 
goals (i.e., the plan that gives the maximum trade-off 
between total achieved goal utilities and total incurred 
action cost) (van den Briel et al., 2004).  
While these approaches each relax an important 
assumption of classical planning, neither addresses how to 
respond to unexpected events that occur during execution. 
One straightforward solution is incremental planning, 
which plans for a fixed time horizon. After plan execution, 
these planners then generate plans for the next horizon. 
This process iterates until the goal state is reached. Another 
approach is dynamic replanning, which monitors the plan’s 
execution. If it is apparent that the plan will fail, the 
planner will replan from the current state. For example, 



HOTRiDE (Ayan et al., 2007) employs this strategy for 
non-combatant evacuation planning. These approaches can 
also be combined. For example, CPEF (Myers, 1999) 
incrementally generates plans to achieve air superiority in 
military combat and replans when unexpected events occur 
during execution (e.g., a plane is shot down).  

However, these approaches do not perform goal 
formulation; they continue trying to satisfy the current 
goal, regardless of whether their focus should dynamically 
shift towards another goal (due to unexpected events).  

Fortunately, some other recent research has addressed 
this topic. For example, Coddington and Luck (2003) 
bestowed agents with motivations, which formulate goals 
in response to thresholds on specific state variables (e.g., if 
a rover’s battery charge falls below 50%, then a goal of full 
battery charge will be formulated (Meneguzzi & Luck, 
2007)). Here we adopt an alternative rule-based approach 
whose antecedents can match to complex games states.  

Research on game AI takes a different approach to goal 
formulation in which specific states lead directly to 
behaviors (i.e., sequences of actions). This approach is 
implemented using behavior trees, which are prioritized 
topological goal structures that have been used in HALO 2 
and other high profile games (Champandard, 2007). 
Behavior trees, which are restricted to fully observable 
environments, require substantial domain engineering to 
anticipate all events. GDA can be applied to partially 
observable environments by using explanations that 
provide additional context for goal formulation.  

Cox’s (2007) work inspired the conception of GDA, 
with its focus on integrated planning, execution, and goal 
reasoning. We extend this concept here in multiple ways, 
including by embedding it in the context of adversarial 
gaming environments.  

Goal Driven Autonomy 

Goal-driven autonomy is a process for online planning in 
autonomous agents (Klenk et al., 2010). Figure 1 illustrates 
how GDA extends Nau’s (2007) model of online planning. 
The GDA model primarily expands and details the scope 
of the Controller, which interacts with a Planner and a 
State Transition System Σ (an execution environment). We 
present only a simplified version of this model, and our 
system is only a partial implementation of this model. 

System Σ is a tuple (S,A,V,γ) with states S, actions A, 
exogenous events V, and state transition function γ: 
S(AV)2

S
, which describes how the execution of an 

action or the occurrence of an event transforms the 
environment from one state to another. For example, given 
an action a in state si, γ returns the updated state si+1. 

The Planner receives as input a planning problem 
(MΣ,sc,gc), where MΣ is a model of Σ (the environment), sc 
is the current state, and gcG is a goal that can be satisfied 
by some set of states SgS. The Planner outputs a plan 
pc={Ac,Xc}, which is a sequence of actions Ac=[ac,…,ac+n] 
paired with a sequence of expectations Xc=[xc,…xc+n].  
Each xiXc  is  a  set  of  state  constraints corresponding to 

Figure 1: A Conceptual Model for Goal Driven Autonomy 

the sequence of states [sc,…,sc+n] expected to occur when 
executing Ac in sc using MΣ. 

The Controller sends the plan’s actions to Σ and 
processes the resulting observations. The GDA model 
takes as input initial state s0, initial goal g0, and MΣ, and 
sends them to the Planner to generate a plan p0 consisting 
of action sequence A0 and expectations X0. When executing 
A0, the Controller performs the following four knowledge-
intensive tasks, which distinguish the GDA model:  

1. Discrepancy detection: This compares the observations 
sc obtained from executing action ac-1 in state sc-1 with 
the expectation xcX (i.e., it tests whether any 
constraints are violated, corresponding to unexpected 
observations). If one or more discrepancies DcD is 
found, then they are given to the following function.  

2. Explanation generation: Given a state sc and a set of 
discrepancies DcD, this hypothesizes one or more 
explanations ecE of Dc’s cause(s), where e is a belief 
about (possibly unknown) aspects of sc or MΣ. 

3. Goal formulation: This creates a goal gcG in response 
to a set of discrepancies Dc, given their explanation 
ecE and the current state scS.  

4. Goal management: Given a set of existing/pending 
goals GG (one of which may be the focus of the 
current plan execution) and a new goal gcG, this may 
update G to create G (e.g., by adding gc and/or 
deleting/modifying other pending goals) and will select 
the next goal gG to be given to the Planner. (It is 
possible that g=g .) 

GDA makes no commitments to specific types of 
algorithms for the highlighted tasks, and treats the Planner 
as a black box. This description of GDA’s conceptual 
model is necessarily incomplete due to space constraints. 
For example, it does not describe the reasoning models 
used by Tasks 1-4 (each of which may perform substantial 
inferencing) nor how they are obtained, it assumes multiple 
plans are not simultaneously executed, and it does not 



address goal management issues such as goal prioritization 
or goal transformation (Cox & Veloso, 1998). However, 
this description should suffice to frame the general model, 
which we use to implement our system, GDA-HTNBots. 

The Domination Game (DOM) 

In this paper, we describe a simple GDA system and its 
application to controlling a set of agents’ actions in a team 
shooter game, called DOM. In DOM games, two teams (of 
multiple agents) compete over specific locations in the 
game world called domination locations. A team receives a 
point for every five seconds that each domination location 
remains under its control (i.e., when the only agents in that 
location are members of their team). The game is won by 
the first team to score a pre-specified number of points. 

Domination games are interesting because individual 
deaths have no direct impact on the final score; any agent 
that is killed will continue playing after a short pause, 
starting in a new location (this is called respawning). This 
allows for an overall strategy and organization to have a 
large impact on game play. 

DOM is a good test for GDA systems because its 
environment is dynamic: the world changes due to the 
opponent’s actions, which our system cannot predict. Also, 
some actions in the game are non-deterministic (e.g., 
adjudicating when members of two teams shoot each 
other). Hence, our system must react to unexpected events 
and dynamically generate new plans that satisfy different 
goals. Manually engineering these plans a priori is 
difficult, and infeasible for suitably complex task 
environments. GDA removes the need to create these 
beforehand by providing an agent with the ability to reason 
about its goals and dynamically determine which to pursue.  

A Goal Driven Autonomy System 

GDA-HTNbots is an extension of HTNbots (Hoang et al., 
2005) in which the Controller performs the four tasks of 
the GDA model. HTNbots uses SHOP (Nau et al., 1999) to 
generate game-playing strategies for DOM based on an 
external hierarchical task network (HTN). These strategies 
are designed to control a majority of the domination 
locations in the game world. Whenever the situation 
changes (i.e., when the owner of a domination location 
changes), HTNbots generates a new plan. Therefore, 
HTNbots is a dynamic replanning system. It calls SHOP to 
find the first method that is applicable to a given task, and 
uses it to generate subtasks that are recursively 
decomposed by other methods into a sequence of actions to 
be executed in the environment. 

Unlike HTNbots, GDA-HTNbots reasons about its 
goals, and can dynamically formulate which goal it should 
plan to satisfy. GDA-HTNbots extends HTNbots to 
instantiate the GDA conceptual model as follows:  

State Transition System (Σ) (task environment): We apply 
GDA-HTNbots to the task of controlling an agent playing 

DOM. We described this task and game environment in the 
preceding section, and describe an example of this 
application in the next section. 

Model of the State Transition System (MΣ): We describe 
the state transition function for DOM using SHOP axioms 
and operators. Exogenous events are not directly modeled 
in SHOP. HTNbots play DOM by monitoring the game 
state and replan as needed.  

Planner: GDA-HTNbots uses SHOP, although other 
planners can be used. Given the current state sc (initially 
s0), current goal gc (initially g0), and MΣ, it will generate an 
HTN plan pc designed to achieve gc when executed in Σ 
starting in sc. This plan includes the sequence of 
expectations Xc determined by the HTN’s methods that are 
anticipated from its execution.  

Discrepancy Detector: This continuously monitors pc’s 
execution in Σ such that, at any time t, it compares the 
observations of state st provided by Σ with the expected 
state xt. If it detects any discrepancy dt (i.e., a mismatch) 
between them, then it outputs dt to the Explanation 
Generator. 

Explanation Generator: Given a discrepancy dt for state st, 
this generates an explanation et of dt. GDA-HTNbots tracks 
the history of the game by counting the number of times 
agents from the opposing team have visited each location. 
Using this information and the discrepancy dt, GDA-
HTNbots identifies an explanation et, which is the strategy 
that the opponent is pursuing. 

Goal Formulator: Given an explanation et representing the 
opponent’s current strategy, GDA-HTNbots formulates a 
goal gt using a set of rules of the form: 

                  if e then g 

The new goal gt directs GDA-HTNbots to counter the 
opponent’s strategy. 

Goal Manager: GDA-HTNbots employs a trivial goal 
management strategy. Given a new goal gt, it immediately 
selects this as the current goal, which the Controller 
submits to the Planner for plan generation.  

Example in the DOM Game 

In this paper, we report on a case study in which the 
system’s task is to control a team of agents in DOM. 
Figure 2 shows an example of a map in a domination game 
with five locations. Our scenario began with the following 
initial state and goal:  

Initial State (s0): This includes the locations of all the 
agents in the game and which team (if any) controls each 
domination location. 

Initial Goal (g0): The initial goal is to win the game (i.e., 
be the first to accumulate 20,000 points).GDA-HTNbots 
sends g0 to SHOP, which generates a plan to dispatch 
GDA-HTNbots’ agents to each domination location and 
control them. Given the uncertainties about the opponent’s 
actions and  the  stochastic  outcome  of  engagements, this  



Figure 2: An example DOM game map with five domination 
locations (yellow flags), where small rectangles identify the 
respawning locations for the agents and the remaining two types 
of icons denote each player’s agents. 

Table 1: Example explanations of discrepancies (with some 
expectations and observations shown), and the corresponding 
recommended goals. 

plan may not yield the expected results. For example, 
Table 1 presents some sample explanations for the DOM 
game (we do not display the full state due to space 
constraints). The first row highlights a situation where the 
bot3 agent was expected to be at location 2, but this did not 
happen. By examining the history of enemy agents at  that  
location, GDA-HTNbots assumes the opponent is 
executing a strategy to heavily defend location 2. Using the 
explanation goal rule set, GDA-HTNbots counters this 
strategy by setting a goal to have bot3 at an alternative 
location, namely location 1. 

The second row shows a discrepancy where GDA-
HTNbots expected to, over the last time period t, earn more 
points than the enemy. However, this did not happen 
because the enemy controlled two of three (total) locations.  
The rule set determines that the next goal should be to 
control one of the locations controlled by the opponent 
(e.g., loc2). Given this, our system generates a plan to send 
two agents to location 2. 

This example illustrates how GDA-HTNbots explains 
discrepancies by reasoning about the opponent’s strategies.  
This enables GDA-HTNbots to formulate goals that 
counter the opponent’s actions. 

 
 
  

Table 2: Domination Teams and Descriptions 

Opponent 

Team 
Description Diff. 

Dom1 Hugger  Sends all agents to domination location 0  trivial 

First Half Of 
Dom Locations  

Sends an agent to the first half +1 

domination locations. Extra agents patrol 

between the 2 locations 

easy 

2nd Half Of 

Dom Locations  

Sends an agent to the second half +1 

domination locations; extra agents patrol 
between the two locations 

easy 

Each Agent to 
One Dom 

Each agent is assigned to a different dom. 
loc. and remains there for the entire game 

med.-
easy 

Smart 

Opportunistic  

Sends agents to each dom. loc. the team 
doesn’t own; if possible, it will send 

multiple agents to each unowned location 

hard 

Greedy 

Distance  

Each turn the agents are assigned to the 

closest domination loc. they do not own 
hard 

Pilot Evaluation  

We conducted a pilot study to assess the performance 
utility of HTNbots’ GDA enhancements. We claim that 
GDA increases our system’s ability to win DOM games 
versus a set of opponents. To test this claim, we performed 
an ablation study that isolates the GDA functionality. 

In particular, we compared the performances of GDA-
HTNbots and HTNbots. Hoang et al. (2005) and Muñoz-
Avila and Hoang (2006) reported that HTNbots performs 
well versus several hard-coded opponents. Thus, HTNbots 
should provide a good baseline for our evaluation. 
However, we expected GDA-HTNbots would outperform 
HTNbots for opponents whose behaviors motivate the 
dynamic formulation of new goals. 

We recorded and compared the performance of these 
systems versus the same set of hard-coded opponents. Our 
performance metric is the difference in the score between 
the system and opponent while playing DOM, divided by 
the system’s score.  

We ran both systems against each of the six opponents 
summarized in Table 2. The first three were the same used 
by Hoang et al. (2005) to test HTNbots, which was found 
to perform well on them. Hence, these are challenging 
DOM opponents for testing whether GDA enhancements 
can improve HTNbots’ performance. The final three 
opponents were created in subsequent studies of HTNbots 
to test reinforcement learning (Smith et al., 2007) and 
case-based reasoning (Auslander et al., 2008) algorithms. 
Among these, the final two opponents were found to be 
particularly difficult to beat. In summary, these opponents 
form a challenging and varied testbed to measure the utility 
of GDA-HTNbots. 

The experimental setup was as follows: Both systems 
were tested versus each of these opponents on the map 
shown in Figure 2. This is the same map that was used in 
the previously mentioned experiments. Each game was run 
three times to account for the randomness introduced by 
non-deterministic game behaviors.  

Discrepancy Explanation Next Goal 

xt: Loc(bot3,loc2) 

st: Loc(bot3,loc2) 

Defended(loc2) Loc(bot3,loc1) 

xt: OwnPts(t)>EnemyPts(t) 

st: OwnPts(t)<EnemyPts(t) 

EnemyCtrl(loc1) 

EnemyCtrl(loc2) 

OwnCtrl(loc2) 



Table 3: Avg. Percent Normalized Difference in Game AI 
System vs. Opponent Scores (with avg. scores in parentheses) 

Opponent Team 

(controls enemies) 

Game AI System (controls friendly forces) 

HTNbots GDA-HTNbots 

Dom1 Hugger  81.2%† 

(20,002 vs. 3,759) 
80.9% 
(20,001 vs. 3,822) 

First Half Of Dom 
Locations  

47.6% 

(20,001 vs. 10,485) 
42.0% 
(20,001 vs. 11,605) 

2nd Half Of Dom 
Locations  

58.4% 

(20,003 vs. 8,318) 
12.5% 
(20,001 vs. 17,503) 

Each Agent to One 
Dom 

49.0% 

(20,001 vs. 10,206) 
40.6% 
(20,002 vs. 11,882) 

Smart Opportunistic  -19.4% 

(16,113 vs. 20,001) 
-4.8% 

(19,048 vs. 20,001) 

Greedy Distance  -17.0% 

(16,605 vs. 20,001) 
0.4% 

(19,614 vs. 19,534) 

†Bold face denotes the better average measure in each row  

The results are shown in Table 3, where each row 
displays the normalized average difference in scores 
(computed over three games) versus each opponent. It also 
shows the average scores for each player. We repeated the 
same experiment with a second map and obtained results 
consistent with the ones discussed here.

2
 The limited 

number of trials in this pilot study prevents us from 
computing statistical significance.  Therefore, we focus our 
discussion on general trends and game analysis.  

Discussion  

The results can be summarized as follows: Against difficult 
opponents (the final two opponents in Table 2), GDA-
HTNbots outperforms HTNbots. Against easy opponents 
(the first four listed in Table 2) HTNbots outperforms 
GDA-HTNbots. We examined game-play records to 
investigate why this occurred, and concluded that the 
initial strategy chosen by HTNbots is frequently sufficient 
to win the game. For example, the Dom1 Hugger 
(opponent) team sends all agents to one location. It is easy 
for HTNbots to immediately generate a winning plan 
against this strategy and start winning from the outset. 
Indeed, in situations where the goals should not be 
changed, this implementation of GDA should not be used. 
 The more difficult opponents reason about the distance 
between the agent locations and the domination locations 
as part of their strategy. These strategies are particularly 
effective versus HTNbots and GDA-HTNbots, which 
encode their knowledge symbolically without metric 
information. Indeed, the two hard opponents soundly 
defeat HTNbots. The advantage of using a specialized 
component to reason about goals becomes apparent in this 
study. By tracking which domination locations the 
opponent is trying to control and which goal was used to 
generate the current plan, GDA-HTNbots can react quickly 
to the opponent’s strategy. This allowed GDA-HTNbots to 

                                                 
2
 For the second map we didn’t obtain results for greedy 

distance because of some path finding issues. 

outperform the Greedy Distance opponent (which 
outperformed HTNbots) and almost perform as well as the 
Smart Opportunistic opponent.  

GDA-HTNbots is simple implementation of the four 
GDA tasks. In future research, we plan to study other 
methods for each of these tasks. First, during discrepancy 
detection, GDA-HTNbots observes discrepancies only 
between discrete variables. A more complete system would 
consider the continuous attributes of the environment (e.g., 
precise agent locations, health, and score). It would also 
represent and reason about relations among these 
attributes. Second, the explanation   generation   process 
allows the system to consider reasons for a given 
discrepancy. In this paper, our system does not 
dynamically derive the explanation using a comprehensive 
reasoning mechanism, and it only considers the opponent's 
strategy. In open domains, it is important to hypothesize 
new entities and events that were not represented in MΣ. 
This capability would substantially diverge from current 
approaches to online planning. Third, during goal 
formulation, GDA-HTNbots uses simple rules to map 
explained discrepancies to specific goals. However, not all 
discrepancies require goal formulation (e.g., some should 
be ignored). A more complete system should reason about 
alternative responses to detected discrepancies, such as by 
reasoning about game state information. This is the reason 
why GDA-HTNbots underperformed versus the easier 
opponents compared to HTNbots; if GDA-HTNbots had a 
more sophisticated Discrepancy Resolver, it could reason 
that a given discrepancy does not warrant goal formulation; 
in which case it would continue pursuing the same goal as 
selected by HTNbots and, hence, would achieve the same 
performance as HTNbots. Finally, GDA-HTNbots 
performs only goal replacement during goal management. 
This was effective for DOM because it does not require 
balancing various goals and focuses solely on defeating an 
individual opponent. In more complex environments, a list 
of pending goals must be maintained, and the system will 
need to consider which goal(s) to pursue at any given time 
by reasoning about resources, tradeoffs, and priorities. 

In future work, we plan to run more trials, which will 
allow us to statistically analyze our claims. In addition, we 
will investigate other methods for the four GDA tasks. We 
also envision ways in which the background knowledge 
used in the GDA process can be learned automatically. 
Finally, we will examine the behavior of GDA systems for 
tasks in other complex domains that have a greater need to 
reason dynamically about which goals to satisfy (e.g., the 
TAO Sandbox (Auslander et al., 2009), which is a 
simulator used to train Naval officers for decision making 
in anti-submarine warfare missions). 

Final Remarks 

Plan generation is the problem of generating a sequence of 
actions that transform the initial state into some goal state 
(Ghallab et al., 2004). Goal driven autonomy (GDA) 
enhances plan generation by addressing two important 



questions. First, it answers when: it determines when the 
planner should start working on a new goal. Second, it 
answers what: it determines which goal should be satisfied 
in response to a detected discrepancy. Our initial 
implementation of GDA illustrates this concept. GDA-
HTNbots can interrupt the execution of a strategy based on 
an earlier goal, and instead generate and execute a plan that 
achieves a different goal that now has higher priority. 

Our implementation barely scratches the surface, as it is 
a simple instantiation of the GDA conceptual model. 
However, our investigation with GDA-HTNbots illustrates 
its potential. The DOM game, when played against 
challenging opponents, has all of the elements targeted by 
GDA: the environment is dynamic, it requires game AI 
agents to conduct online planning, and it must constantly 
change its goals to perform well (versus the more 
challenging opponents). Furthermore, the baseline system, 
HTNbots, performed well on this DOM task. Hence, GDA-
HTNbots’ performance improvement versus the more 
challenging opponents is encouraging, and we look 
forward to assessing a more complete GDA model’s 
performance in future work. 
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